cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377286 Numbers k such that there are no prime-powers between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Examples

			Primes 18 and 19 are 61 and 67, and the interval (62, 63, 64, 65, 66) contains the prime-power 64, so 18 is not in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933(n) elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
These are the positions of 0 in A080101, or 1 in A366833.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
For at least one prime-power we have A377057.
For one instead of no prime-powers we have A377287.
For two instead of no prime-powers we have A377288.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==0&]
  • Python
    from itertools import count, islice
    from sympy import factorint, nextprime
    def A377286_gen(): # generator of terms
        p, q, k = 2, 3, 1
        for k in count(1):
            if all(len(factorint(i))>1 for i in range(p+1,q)):
                yield k
            p, q = q, nextprime(q)
    A377286_list = list(islice(A377286_gen(),66)) # Chai Wah Wu, Oct 27 2024