A377287 Numbers k such that there is exactly one prime-power between prime(k)+1 and prime(k+1)-1.
2, 6, 11, 15, 18, 22, 31, 39, 53, 54, 61, 68, 72, 97, 99, 114, 129, 146, 162, 172, 217, 219, 263, 283, 309, 329, 357, 409, 445, 487, 519, 564, 609, 656, 675, 705, 811, 847, 882, 886, 1000, 1028, 1163, 1252, 1294, 1381, 1423, 1457, 1523, 1715, 1821, 1877, 1900
Offset: 1
Keywords
Examples
Primes 18 and 19 are 61 and 67, and the interval (62, 63, 64, 65, 66) contains only the one prime-power 64, so 18 is in the sequence.
Crossrefs
Programs
-
Mathematica
Select[Range[100],Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]==1&]
-
Python
from itertools import count, islice from sympy import factorint, nextprime def A377287_gen(): # generator of terms p, q, k = 2, 3, 1 for k in count(1): if sum(1 for i in range(p+1,q) if len(factorint(i))<=1)==1: yield k p, q = q, nextprime(q) A377287_list = list(islice(A377287_gen(),53)) # Chai Wah Wu, Oct 28 2024