cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A345531 Smallest prime power greater than the n-th prime.

Original entry on oeis.org

3, 4, 7, 8, 13, 16, 19, 23, 25, 31, 32, 41, 43, 47, 49, 59, 61, 64, 71, 73, 79, 81, 89, 97, 101, 103, 107, 109, 113, 121, 128, 137, 139, 149, 151, 157, 163, 167, 169, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 256, 263, 269, 271, 277
Offset: 1

Views

Author

Dario T. de Castro, Jun 20 2021

Keywords

Comments

Take the family of correlated prime-indexed conjectures appearing in A343249 - A343253, in which an alternative formula for the p-adic order of positive integers is proposed. There, the general p-indexed conjecture says that v_p(n), the p-adic order of n, is given by the formula: v_p(n) = log_p(n / L_p(k0, n)), where L_p(k0, n) is the lowest common denominator of the elements of the set S_p(k0, n) = {(1/n)*binomial(n, k), with 0 < k <= k0 such that k is not divisible by p}. Evidence suggests that the primality of p is a necessary condition in this general conjecture. So, if a composite number q is used instead of a prime p in the proposed formula for the p-adic (now, q-adic) order of n, the first counterexample (failure) is expected to occur for n = q * a(i), where i is the index of the smallest prime that divides q.
The prime-power a(n) is at most the next prime, so this sequence is strictly increasing. See also A366833. - Gus Wiseman, Nov 06 2024

Examples

			a(4) = 8 because the fourth prime number is 7, and the least power of a prime which is greater than 7 is 2^3 = 8.
		

Crossrefs

Starting with n instead of prime(n): A000015, A031218, A377468, A377780, A377782.
Opposite (greatest prime-power less than): A065514, A377289, A377781.
For squarefree instead of prime-power: A112926, opposite A112925.
The difference from prime(n) is A377281.
The prime terms have indices A377286(n) - 1.
First differences are A377703.
A version for perfect-powers is A378249.
A000961 and A246655 list the prime-powers, differences A057820.
A024619 and A361102 list the non-prime-powers, differences A375735.

Programs

  • Maple
    f:= proc(n) local p,x;
      p:= ithprime(n);
      for x from p+1 do
        if nops(numtheory:-factorset(x)) = 1 then return x fi
      od
    end proc:
    map(f, [$1..100]); # Robert Israel, Aug 25 2024
  • Mathematica
    a[i_]:= Module[{j, k, N = 0, tab={}}, tab = Sort[Drop[DeleteDuplicates[Flatten[Table[ If[Prime[j]^k > Prime[i], Prime[j]^k], {j, 1, i+1}, {k, 1, Floor[Log[Prime[j], Prime[i+1]]]}]]], 1]]; N = Take[tab, 1][[1]]; N];
    tabseq = Table[a[i],{i, 1, 100}];
    (* second program *)
    Table[NestWhile[#+1&,Prime[n]+1, Not@*PrimePowerQ],{n,100}] (* Gus Wiseman, Nov 06 2024 *)
  • PARI
    A000015(n) = for(k=n,oo,if((1==k)||isprimepower(k),return(k)));
    A345531(n) = A000015(1+prime(n)); \\ Antti Karttunen, Jul 19 2021
    
  • Python
    from itertools import count
    from sympy import prime, factorint
    def A345531(n): return next(filter(lambda m:len(factorint(m))<=1, count(prime(n)+1))) # Chai Wah Wu, Oct 25 2024

Formula

a(n) = A000015(1+A000040(n)). - Antti Karttunen, Jul 19 2021
a(n) = A000015(A008864(n)). - Omar E. Pol, Oct 27 2021

A080101 Number of prime powers in all composite numbers between n-th prime and next prime.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 28 2003

Keywords

Comments

The maximum value of terms in the sequence, through the (10^5)th term, is 2. - Harvey P. Dale, Aug 24 2014
This is conjectured to be the maximum, see also A366833. - Gus Wiseman, Nov 06 2024

Examples

			There are two prime powers between 2179 = A000040(327) and 2203 = A000040(328): 2187 = 3^7 and 2197 = 13^3, therefore a(327) = 2, A080102(327) = 2187 and A080103(327) = 2197.
		

Crossrefs

For powers of 2 instead of primes we have A244508, see also A013597, A014210, A014234, A304521.
Adding one gives A366833.
For non-prime-powers instead of prime-powers we have A368748.
Positions of positive terms are A377057, primes A053607.
Positions of 0 are A377286.
Positions of 1 are A377287.
Positions of 2 are A377288, primes A053706.
For perfect-powers (instead of prime-powers) we have A377432.
A000015 gives the least prime-power >= n, difference A377282.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820, seconds A376596.
A031218 gives the greatest prime-power <= n, difference A276781.
A046933(n) counts the interval from A008864(n) to A006093(n+1).
A065514 gives the greatest prime-power < prime(n), difference A377289.
A246655 lists the prime-powers not including 1, complement A361102.
A345531 gives the least prime-power > prime(n), difference A377281.

Programs

  • Maple
    a := proc(n) local c, k, p: c, p := 0, ithprime(n): for k from p+1 to nextprime(p)-1 do if nops(numtheory:-factorset(k)) = 1 then c := c+1: fi: od: c: end:
    seq(a(n), n = 1 .. 105); # Lorenzo Sauras Altuzarra, Jul 08 2022
  • Mathematica
    prpwQ[n_]:=Module[{fi=FactorInteger[n]},Length[fi]==1&&fi[[1,2]]>1]; nn=600;With[{pwrs=Table[If[prpwQ[n],1,0],{n,nn}]},Table[Total[ Take[ pwrs,{Prime[n],Prime[n+1]}]],{n,PrimePi[nn]-1}]] (* Harvey P. Dale, Aug 24 2014 *)
    Table[Length[Select[Range[Prime[n]+1,Prime[n+1]-1],PrimePowerQ]],{n,30}] (* Gus Wiseman, Nov 06 2024 *)

Formula

a(n) = A366833(n) - 1. - Gus Wiseman, Nov 06 2024

A366833 Number of times n appears in A362965 (number of primes <= the n-th prime power).

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Paolo Xausa, Oct 25 2023

Keywords

Comments

Conjecture: a(n) can be only 1, 2, or 3 (with the first occurrences of 3 appearing at n = 4, 9, 30, 327 and 3512).
One less than the number of prime powers between prime(n) and prime(n+1), inclusive. - Gus Wiseman, Jan 09 2025

Crossrefs

Run lengths of A362965.
Subtracting one gives A080101.
For non prime powers we have A368748.
Positions of terms > 1 are A377057.
Positions of 1 are A377286.
Positions of 2 are A377287.
For perfect powers we have A377432.
For squarefree we have A373198.
A000015 gives the least prime power >= n, difference A377282.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A024619 and A361102 list the non prime powers, differences A375708 and A375735.
A031218 gives the greatest prime power <= n, difference A276781.
A046933(n) counts the interval from A008864(n) to A006093(n+1).
A246655 lists the prime powers not including 1.
A366835 counts primes between prime powers.

Programs

  • Mathematica
    With[{upto=1000},Map[Length,Most[Split[PrimePi[Select[Range[upto],PrimePowerQ]]]]]] (* Considers prime powers up to 1000 *)

Formula

a(n) = A080101(n) + 1. - Gus Wiseman, Jan 09 2025

A377289 Difference between prime(n) and the previous prime-power (exclusive).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 1, 2, 4, 2, 2, 5, 4, 2, 4, 4, 6, 2, 3, 4, 2, 6, 2, 6, 8, 4, 2, 4, 2, 4, 2, 3, 6, 2, 10, 2, 6, 6, 4, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 8, 1, 6, 6, 2, 6, 4, 2, 4, 14, 4, 2, 4, 14, 6, 4, 2, 4, 6, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2024

Keywords

Examples

			The twelfth prime is 37, with previous prime-power 32, so a(12) = 5.
		

Crossrefs

For powers of two see A013597, A014210, A014234, A244508, A304521.
For prime instead of prime-power we have A075526.
This is the restriction of A276781 (shifted right) to the primes.
For next instead of previous prime-power we have A377281, restriction of A377282.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820, complement A361102.
A031218 gives the greatest prime-power <= n.
A065514 gives the greatest prime-power < prime(n).
A080101 counts prime-powers between primes (exclusive), cf. A377286, A377287, A377288.
A246655 lists the prime-powers not including 1.

Programs

  • Mathematica
    Table[Prime[n]-NestWhile[#-1&, Prime[n]-1,#>1&&!PrimePowerQ[#]&],{n,100}]
  • Python
    from sympy import prime, factorint
    def A377289(n): return (p:=prime(n))-next(filter(lambda m:len(factorint(m))<=1, range(p-1,0,-1))) # Chai Wah Wu, Oct 25 2024

Formula

a(n) = prime(n) - A031218(prime(n)-1).
a(n) = prime(n) - A065514(n).
a(n) = A276781(prime(n)-1).

A377436 Numbers k such that there is no perfect-power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

1, 3, 5, 7, 8, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 26, 27, 28, 29, 32, 33, 35, 36, 37, 38, 40, 41, 42, 43, 45, 46, 49, 50, 51, 52, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 67, 69, 70, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 84, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			Primes 8 and 9 are 19 and 23, and the interval (20,21,22) contains no prime-powers, so 8 is in the sequence.
		

Crossrefs

For powers of 2 instead of primes see A377467, A013597, A014210, A014234, A244508.
For squarefree instead of perfect-power we have A068360, see A061398, A377430, A377431.
For just squares (instead of all perfect-powers) we have A221056, primes A224363.
For prime-powers (instead of perfect-powers) we have A377286.
These are the positions of 0 in A377432.
For one instead of none we have A377434, for prime-powers A377287.
For two instead of none we have A377466, for prime-powers A377288, primes A053706.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A046933 counts the interval from A008864(n) to A006093(n+1).
A065514 gives the nearest prime-power before prime(n)-1, difference A377289.
A080101 and A366833 count prime-powers between primes, see A377057, A053607, A304521.
A081676 gives the nearest perfect-power up to n.
A246655 lists the prime-powers not including 1, complement A361102.
A377468 gives the nearest perfect-power after n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Length[Select[Range[Prime[#]+1, Prime[#+1]-1],perpowQ]]==0&]

A377281 Difference between the n-th prime and the next prime-power (exclusive).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 2, 4, 2, 2, 1, 4, 2, 4, 2, 6, 2, 3, 4, 2, 6, 2, 6, 8, 4, 2, 4, 2, 4, 8, 1, 6, 2, 10, 2, 6, 6, 4, 2, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 5, 6, 6, 2, 6, 4, 2, 6, 14, 4, 2, 4, 14, 6, 6, 2, 4, 6, 2, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2024

Keywords

Examples

			The twelfth prime is 37, with next prime-power 41, so a(12) = 4.
		

Crossrefs

For prime instead of prime-power we have A001223.
For powers of two instead of primes we have A013597, A014210, A014234, A244508, A304521.
This is the restriction of A377282 to the prime numbers.
For previous instead of next prime-power we have A377289, restriction of A276781.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820, complement A361102.
A031218 gives the greatest prime-power <= n.
A080101 counts prime-powers between primes (exclusive), cf. A377286, A377287, A377288.
A246655 lists the prime-powers not including 1.

Programs

  • Mathematica
    Table[NestWhile[#+1&,Prime[n]+1,!PrimePowerQ[#]&]-Prime[n],{n,100}]
  • Python
    from itertools import count
    from sympy import prime, factorint
    def A377281(n): return -(p:=prime(n))+next(filter(lambda m:len(factorint(m))<=1, count(p+1))) # Chai Wah Wu, Oct 25 2024

Formula

a(n) = A000015(prime(n)) - prime(n).
a(n) = A345531(n) - prime(n).
a(n) = A377282(prime(n)).

A377057 Numbers k such that there is at least one prime-power between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

2, 4, 6, 9, 11, 15, 18, 22, 30, 31, 39, 53, 54, 61, 68, 72, 97, 99, 114, 129, 146, 162, 172, 217, 219, 263, 283, 309, 327, 329, 357, 409, 445, 487, 519, 564, 609, 656, 675, 705, 811, 847, 882, 886, 1000, 1028, 1163, 1252, 1294, 1381, 1423, 1457
Offset: 1

Views

Author

Gus Wiseman, Oct 25 2024

Keywords

Examples

			Primes 18 and 19 are 61 and 67, and the interval (62, 63, 64, 65, 66) contains the prime-power 64, so 18 is in the sequence.
		

Crossrefs

The interval from A008864(n) to A006093(n+1) has A046933(n) elements.
For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A304521.
The corresponding primes are A053607.
The nearest prime-power before prime(n)-1 is A065514, difference A377289.
These are the positions of positive terms in A080101, or terms >1 in A366833.
The nearest prime-power after prime(n)+1 is A345531, difference A377281.
For no prime-powers we have A377286.
For exactly one prime-power we have A377287.
For exactly two prime-powers we have A377288, primes A053706.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime-power <= n.
A246655 lists the prime-powers not including 1, complement A361102.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],PrimePowerQ]]>=1&]
  • Python
    from itertools import count, islice
    from sympy import factorint, nextprime
    def A377057_gen(): # generator of terms
        p, q, k = 2, 3, 1
        for k in count(1):
            if any(len(factorint(i))<=1 for i in range(p+1,q)):
                yield k
            p, q = q, nextprime(q)
    A377057_list = list(islice(A377057_gen(),52)) # Chai Wah Wu, Oct 27 2024

Formula

prime(a(n)) = A053607(n).

A377282 Difference between n and the next prime-power (exclusive).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 4, 3, 2, 1, 2, 1, 6, 5, 4, 3, 2, 1, 2, 1, 2, 1, 6, 5, 4, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2024

Keywords

Examples

			The next prime-power after 13 is 16, so a(12) = 3.
		

Crossrefs

For powers of 2 see A013597, A014210, A014234, A244508, A304521.
For prime instead of prime-power we have A013632.
For previous instead of next prime-power we have A276781, restriction A377289.
The restriction to the prime numbers is A377281.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820, complement A361102.
A031218 gives the greatest prime-power <= n.
A080101 counts prime-powers between primes (exclusive), cf. A377286, A377287, A377288.

Programs

  • Mathematica
    Table[NestWhile[#+1&,n+1,!PrimePowerQ[#]&]-n,{n,100}]
  • Python
    from itertools import count
    from sympy import factorint
    def A377282(n): return next(filter(lambda m:len(factorint(m))<=1, count(n+1)))-n # Chai Wah Wu, Oct 25 2024

Formula

a(n) = A000015(n) - n + 1 for n > 1.
a(prime(n)) = A377281(n).

A377434 Numbers k such that there is a unique perfect-power x in the range prime(k) < x < prime(k+1).

Original entry on oeis.org

2, 6, 15, 18, 22, 25, 31, 34, 39, 44, 47, 48, 53, 54, 61, 66, 68, 72, 78, 85, 92, 97, 99, 105, 114, 122, 129, 137, 146, 154, 162, 168, 172, 181, 191, 200, 210, 217, 219, 228, 240, 251, 263, 269, 274, 283, 295, 306, 309, 319, 329, 342, 357, 367, 378, 393, 400
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2024

Keywords

Comments

Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.

Examples

			Primes 4 and 5 are 7 and 11, and the interval (8,9,10) contains two perfect-powers (8,9), so 4 is not in the sequence.
Primes 5 and 6 are 11 and 13, and the interval (12) contains no perfect-powers, so 5 is not in the sequence.
Primes 6 and 7 are 13 and 17, and the interval (14,15,16) contains just one perfect-power (16), so 6 is in the sequence.
		

Crossrefs

For powers of 2 instead of primes see A013597, A014210, A014234, A244508, A377467.
For prime-powers we have A377287.
For squarefree numbers see A377430, A061398, A377431, A068360.
These are the positions of 1 in A377432.
For no perfect-powers we have A377436.
For more than one perfect-power we have A377466.
A000015 gives the least prime-power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect-powers, differences A053289, seconds A376559.
A007916 lists the non-perfect-powers, differences A375706, seconds A376562.
A031218 gives the greatest prime-power <= n.
A046933 counts the interval from A008864(n) to A006093(n+1).
A065514 gives the greatest prime-power < prime(n), difference A377289.
A081676 gives the greatest perfect-power <= n.
A131605 lists perfect-powers that are not prime-powers.
A345531 gives the least prime-power > prime(n), difference A377281.
A366833 counts prime-powers between primes, see A053607, A304521.
A377468 gives the least perfect-power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Select[Range[100],Length[Select[Range[Prime[#]+1,Prime[#+1]-1],perpowQ]]==1&]

A377430 Numbers k such that there is exactly one squarefree number between prime(k)+1 and prime(k+1)-1.

Original entry on oeis.org

3, 4, 9, 10, 13, 14, 15, 22, 26, 33, 39, 48, 59, 60, 65, 85, 88, 89, 93, 104, 113, 116, 122, 142, 143, 147, 148, 155, 181, 188, 198, 201, 209, 212, 213, 224, 226, 234, 235, 244, 254, 264, 265, 268, 287, 288, 313, 320, 328, 332, 333, 341, 343, 353, 361, 366
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2024

Keywords

Examples

			Primes 4 and 5 are 7 and 11, and the interval (8,9,10) contains only squarefree 10, so 4 is in the sequence.
		

Crossrefs

For composite instead of squarefree we have A029707.
These are the positions of 1 in A061398, or 2 in A373198.
For no squarefree numbers we have A068360.
For prime-power instead of squarefree we have A377287.
For at least one squarefree number we have A377431.
For perfect-power instead of squarefree we have A377434.
A000040 lists the primes, differences A001223, seconds A036263.
A002808 lists the composites, complement A008578.
A005117 lists the squarefree numbers, complement A013929.
A377038 gives k-differences of squarefree numbers.

Programs

  • Maple
    R:= NULL: count:= 0: q:= 2:
    for k from 1 while count < 100 do
      p:= q; q:= nextprime(q);
      if nops(select(numtheory:-issqrfree,[$p+1 .. q-1]))=1 then
        R:= R,k; count:= count+1;
     fi
    od:
    R; # Robert Israel, Nov 29 2024
  • Mathematica
    Select[Range[100], Length[Select[Range[Prime[#]+1,Prime[#+1]-1],SquareFreeQ]]==1&]
  • PARI
    is(n,p=prime(n))=my(q=nextprime(p+1),s); for(k=p+1,q-1, if(issquarefree(k) && s++>1, return(0))); s==1 \\ Charles R Greathouse IV, Nov 29 2024
Showing 1-10 of 30 results. Next