A377290 For each row n in array A374602(n, k), the period size, as a count of terms, that divides the row into congruent subsequences.
1, 2, 2, 6, 4, 4, 14, 10, 8, 10, 6, 8, 14, 16, 34, 10, 8, 34, 8, 12, 22, 22, 32, 18, 18, 30, 14, 18, 16, 12, 38, 22, 28, 26, 42, 20, 74, 36, 14, 54, 12, 16, 34, 38, 54, 26, 58, 50, 24, 36, 102, 46, 32, 78, 14, 22, 38, 46, 118, 22, 30, 68, 36, 32, 130, 74, 34
Offset: 1
Keywords
Examples
Given formula sqrt((d-c)*b^2 + c*(b+1)^2) from A374602, for n=5, the first few terms of A374602(5, k) are: sqrt((7-3)*1^2 + 3*(1+1)^2) = 4, sqrt((7-6)*1^2 + 6*(1+1)^2) = 5, sqrt((7-1)*4^2 + 1*(4+1)^2) = 11, sqrt((7-4)*10^2 + 4*(10+1)^2) = 28, sqrt((7-3)*23^2 + 3*(23+1)^2) = 62, sqrt((7-6)*29^2 + 6*(29+1)^2) = 79, sqrt((7-1)*66^2 + 1*(66+1)^2) = 175, sqrt((7-4)*168^2 + 4*(168+1)^2) = 446, producing the repeating pattern of c values {3, 6, 1, 4}, of length 4 -> a(5).
Links
- Charles L. Hohn, Table of n, a(n) for n = 1..90
Comments