A377291 For each row n in array A374602(n, k), the asymptotic geometric growth factor of every A377290(n) terms, represented by its nearest integer.
6, 14, 7, 98, 16, 34, 1442, 398, 194, 119, 30, 62, 4354, 1154, 115598, 322, 23, 155234, 48, 98, 10402, 2702, 64514, 727, 482, 3040, 1154, 2114, 70, 142, 21314, 5474, 2498, 1442, 16793602, 674, 48497294, 158402, 47, 48670, 96, 194, 39202, 9998, 1684802, 2599
Offset: 1
Keywords
Examples
For n = 5, the first few terms of A374602(5, k) are {4, 5, 11, 28, 62, 79, 175, 446, 988} and the period size is A377290(5) = 4, giving A374602(5, 1+4)/A374602(5, 1) = 62/4 = 15.5, 79/5 = 15.8, 175/11 = 15.909..., 446/28 = 15.928..., 988/62 = 15.935..., ..., to limit 15.937... -> g(5), from which g(5)+(1/g(5)) = 16 -> a(5).
Links
- Charles L. Hohn, Table of n, a(n) for n = 1..90
Formula
a(n) = round(g(n)) = ceiling(g(n)) = g(n)+(1/g(n)).
Inverse: g(n) = (sqrt(a(n)^2-4)+a(n))/2.
For d = A000037(n) and x in {1, 2, 4}, when d+x is a square (unless x==4 and d+x is even): a(n) = 4/x*d+2.
For d = A000037(n) and x in {-4, 1, 2, 4}, when n > 3 and d-x is a square (unless x==-4 and d-x is odd): a(n) = (4/abs(x))^2*d^2-16/x*d+2.
Comments