A377297 Decimal expansion of the smallest positive imaginary solution to Gamma(1+z) = Gamma(1-z).
1, 8, 0, 5, 5, 4, 7, 0, 7, 1, 6, 0, 5, 1, 0, 6, 9, 1, 9, 8, 7, 6, 3, 6, 6, 6, 2, 2, 1, 3, 3, 7, 3, 5, 1, 1, 4, 4, 6, 2, 1, 2, 4, 9, 4, 7, 1, 2, 7, 5, 7, 5, 3, 5, 3, 9, 3, 1, 2, 9, 2, 3, 7, 3, 0, 2, 4, 8, 8, 4, 2, 2, 4, 7, 1, 9, 5, 3, 8, 5, 3, 2, 5, 6, 0, 7, 1, 2, 7, 5, 7, 5, 2, 6, 3, 2, 4, 3, 8, 0, 9, 8, 2, 5, 2
Offset: 1
Examples
1.8055470716051069198763666... .
Programs
-
Maple
Digits:= 120: fsolve(GAMMA(1+z*I)=GAMMA(1-z*I), z=0..3); # Alois P. Heinz, Oct 25 2024
-
Mathematica
RealDigits[x /. FindRoot[Gamma[1 + x*I] == Gamma[1 - x*I], {x, 2}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Oct 23 2024 *) RealDigits[x /. FindRoot[Re[Gamma[I*x]] == 0, {x, 2}, WorkingPrecision -> 120]][[1]] (* Vaclav Kotesovec, Oct 25 2024 *)
-
Python
from mpmath import mp, nstr, factorial, findroot mp.dps = 120 root = findroot(lambda z: factorial(z)-factorial(-z), 1.8j).imag A377297 = [int(d) for d in nstr(root, n=mp.dps)[:-1] if d != '.']
Formula
Gamma(1+i*1.8055470716051069...) = Gamma(1-i*1.8055470716051069...) = 0.19754864094576264...
From Jwalin Bhatt, Aug 23 2025: (Start)
Smallest positive imaginary root of the equation x*sin(Pi*x)*Gamma(x)^2 = Pi.
Smallest positive real root of the equation Sum_{n>=1} x/n - arctan(x/n) = x * gamma where gamma = A001620. (End)
Comments