A377302 Decimal expansion of the smallest positive real solution to Gamma(1+z) = Gamma(1-z).
2, 3, 6, 1, 1, 9, 1, 0, 8, 7, 1, 6, 3, 4, 1, 6, 6, 3, 4, 4, 9, 7, 3, 4, 1, 0, 3, 9, 6, 3, 2, 4, 0, 3, 7, 4, 3, 5, 4, 8, 5, 2, 8, 7, 1, 5, 7, 2, 5, 8, 1, 3, 5, 9, 6, 1, 0, 1, 9, 0, 4, 4, 3, 1, 6, 9, 2, 1, 3, 7, 4, 1, 0, 3, 7, 9, 1, 0, 9, 6, 4, 9, 3, 2, 0, 2, 2, 5, 2, 9, 0, 7, 4, 7, 5, 2, 8, 4, 6, 8, 7, 1, 1, 4, 9
Offset: 1
Examples
2.36119108716341663449734103963240374354852871572581359610190443169213741...
Programs
-
Maple
Digits:= 120: fsolve(GAMMA(1+z)=GAMMA(1-z), z=1..3); # Alois P. Heinz, Oct 25 2024
-
Mathematica
RealDigits[x /. FindRoot[Gamma[1 + x] == Gamma[1 - x], {x, 5/2}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Oct 23 2024 *) RealDigits[x /. FindRoot[x*Sin[Pi*x]*Gamma[x]^2 == Pi, {x, 2}, WorkingPrecision -> 120]][[1]](* Vaclav Kotesovec, Oct 25 2024 *)
-
Python
from mpmath import mp, nstr, factorial, findroot mp.dps = 120 root = findroot(lambda z: factorial(z)-factorial(-z), 2.4) A377302 = [int(d) for d in nstr(root, n=mp.dps)[:-1] if d != '.']
Formula
Gamma(1+2.3611910871634166...) = Gamma(1-2.3611910871634166...) = 2.8607322727573070...
Smallest positive real root of the equation x*sin(Pi*x)*Gamma(x)^2 = Pi. - Vaclav Kotesovec, Oct 25 2024
Smallest positive real root of the equation Sum_{n>=1} x/n - arctanh(x/n) = x*euler_gamma - i*Pi. - Jwalin Bhatt, Aug 23 2025
Comments