cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377302 Decimal expansion of the smallest positive real solution to Gamma(1+z) = Gamma(1-z).

Original entry on oeis.org

2, 3, 6, 1, 1, 9, 1, 0, 8, 7, 1, 6, 3, 4, 1, 6, 6, 3, 4, 4, 9, 7, 3, 4, 1, 0, 3, 9, 6, 3, 2, 4, 0, 3, 7, 4, 3, 5, 4, 8, 5, 2, 8, 7, 1, 5, 7, 2, 5, 8, 1, 3, 5, 9, 6, 1, 0, 1, 9, 0, 4, 4, 3, 1, 6, 9, 2, 1, 3, 7, 4, 1, 0, 3, 7, 9, 1, 0, 9, 6, 4, 9, 3, 2, 0, 2, 2, 5, 2, 9, 0, 7, 4, 7, 5, 2, 8, 4, 6, 8, 7, 1, 1, 4, 9
Offset: 1

Views

Author

Jwalin Bhatt, Oct 23 2024

Keywords

Comments

This is the second smallest solution, the smallest one being purely imaginary A377297.
When expressed in terms of Gauss's Pi function, it is the smallest real solution to Pi(z) = Pi(-z).

Examples

			2.36119108716341663449734103963240374354852871572581359610190443169213741...
		

Crossrefs

Programs

  • Maple
    Digits:= 120:
    fsolve(GAMMA(1+z)=GAMMA(1-z), z=1..3);  # Alois P. Heinz, Oct 25 2024
  • Mathematica
    RealDigits[x /. FindRoot[Gamma[1 + x] == Gamma[1 - x], {x, 5/2}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Oct 23 2024 *)
    RealDigits[x /. FindRoot[x*Sin[Pi*x]*Gamma[x]^2 == Pi, {x, 2}, WorkingPrecision -> 120]][[1]](* Vaclav Kotesovec, Oct 25 2024 *)
  • Python
    from mpmath import mp, nstr, factorial, findroot
    mp.dps = 120
    root = findroot(lambda z: factorial(z)-factorial(-z), 2.4)
    A377302 = [int(d) for d in nstr(root, n=mp.dps)[:-1] if d != '.']

Formula

Gamma(1+2.3611910871634166...) = Gamma(1-2.3611910871634166...) = 2.8607322727573070...
Smallest positive real root of the equation x*sin(Pi*x)*Gamma(x)^2 = Pi. - Vaclav Kotesovec, Oct 25 2024
Smallest positive real root of the equation Sum_{n>=1} x/n - arctanh(x/n) = x*euler_gamma - i*Pi. - Jwalin Bhatt, Aug 23 2025