A377304 a(n) is the number of distinct cuboids whose edges are divisors of n.
1, 4, 4, 10, 4, 20, 4, 20, 10, 20, 4, 56, 4, 20, 20, 35, 4, 56, 4, 56, 20, 20, 4, 120, 10, 20, 20, 56, 4, 120, 4, 56, 20, 20, 20, 165, 4, 20, 20, 120, 4, 120, 4, 56, 56, 20, 4, 220, 10, 56, 20, 56, 4, 120, 20, 120, 20, 20, 4, 364, 4, 20, 56, 84, 20, 120, 4, 56
Offset: 1
Keywords
Examples
a(4) = 10, because there are 10 distinct cuboids whose edges are divisors of 4: (1, 1, 1), (1, 1, 2), (1, 1, 4), (1, 2, 2), (1, 2, 4), (1, 4, 4), (2, 2, 2), (2, 2, 4), (2, 4, 4), (4, 4, 4).
Links
- Felix Huber, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A377304:=proc(n) local d; d:=NumberTheory:-tau(n); return (d^3+3*d^2+2*d)/6 end proc; seq(A377304(n),n=1..68);
-
Mathematica
a[n_] := Binomial[DivisorSigma[0, n] + 2, 3]; Array[a, 70] (* Amiram Eldar, Nov 07 2024 *)
Formula
a(n) = (tau(n)^3 + 3*tau(n)^2 + 2*tau(n))/6.
a(n) = binomial(tau(n) + 2, 3).
Comments