A377320 a(n) is the smallest positive integer k such that n + k and n - k have the same number of prime factors.
1, 1, 1, 3, 2, 2, 2, 6, 1, 5, 3, 2, 3, 6, 1, 1, 3, 2, 9, 2, 2, 5, 3, 4, 6, 1, 1, 11, 6, 4, 1, 6, 2, 2, 2, 2, 3, 8, 1, 1, 3, 2, 4, 3, 4, 12, 1, 1, 3, 2, 3, 1, 1, 3, 2, 7, 1, 4, 7, 4, 3, 6, 5, 1, 2, 1, 3, 5, 1, 3, 4, 4, 3, 1, 4, 13, 6, 2, 5, 15, 2, 7, 1, 3, 3, 1, 3
Offset: 4
Keywords
Examples
a(7) = 3 because 10 and 4 have both two prime factors. 8 and 6 or 9 and 7 respectively have a different number of prime factors.
Links
- Felix Huber, Table of n, a(n) for n = 4..10000
Programs
-
Maple
A377320:=proc(n) local k; for k to n-1 do if NumberTheory:-Omega(n+k)=NumberTheory:-Omega(n-k) then return k fi od; end proc; seq(A377320(n),n=4..90);
-
Mathematica
A377320[n_] := Module[{k = 0}, While[PrimeOmega[++k + n] != PrimeOmega[n - k]]; k]; Array[A377320, 100, 4] (* Paolo Xausa, Dec 02 2024 *)
-
PARI
a(n) = my(k=1); while (bigomega(n+k) != bigomega(n-k), k++); k; \\ Michel Marcus, Nov 17 2024
Formula
1 <= a(n) <= A082467(n).
Comments