A377321 a(n) is the smallest positive integer k such that n + k and n - k have the same number of distinct prime factors.
1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 3, 2, 2, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 4, 4, 1, 1, 2, 1, 2, 1, 3, 3, 1, 3, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 3, 1, 4, 6, 3, 1, 3, 3, 2, 2, 2, 2, 3, 1, 1, 2, 1, 1, 3, 2, 3, 1, 1, 1, 3, 2, 3, 1, 1, 3, 2, 2
Offset: 4
Keywords
Examples
a(7) = 2 because 9 and 5 have both one distinct prime factor. 8 and 6 have a different number of distinct prime factors.
Links
- Felix Huber, Table of n, a(n) for n = 4..10000
Programs
-
Maple
A377321:=proc(n) local k; for k to n-1 do if NumberTheory:-Omega(n+k,'distinct')=NumberTheory:-Omega(n-k,'distinct') then return k fi od; end proc; seq(A377321(n),n=4..90);
-
Mathematica
A377321[n_] := Module[{k = 0}, While[PrimeNu[++k + n] != PrimeNu[n - k]]; k]; Array[A377321, 100, 4] (* Paolo Xausa, Dec 02 2024 *)
-
PARI
a(n) = my(k=1); while (omega(n+k) != omega(n-k), k++); k; \\ Michel Marcus, Nov 17 2024
Formula
1 <= a(n) <= A082467(n).
Comments