A377324
E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^3) - 1)/A(x).
Original entry on oeis.org
1, 1, 5, 52, 839, 18436, 513797, 17366224, 690366875, 31565619916, 1632064968929, 94159057903384, 5996889060457055, 417920884113926740, 31634205840603000221, 2584579552124805784672, 226699825143636127509347, 21247444370267806167804316, 2119206766514801966851437113
Offset: 0
-
a(n) = sum(k=0, n, (3*n-k)!/(3*n-2*k+1)!*stirling(n, k, 2));
A377347
E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^2) - 1)/A(x)^2.
Original entry on oeis.org
1, 1, 1, 7, 41, 391, 4509, 62847, 1038001, 19580071, 418681877, 9973993855, 262293996777, 7545559829991, 235715629493005, 7946944965054271, 287592204406672481, 11120005819664145895, 457514133092462477253, 19957535405566629526335, 920056233384401619083545
Offset: 0
-
a(n) = sum(k=0, (2*n+1)\3, (2*n-2*k)!/(2*n-3*k+1)!*stirling(n, k, 2));
A377348
E.g.f. satisfies A(x) = 1 + (exp(x*A(x)^3) - 1)/A(x)^3.
Original entry on oeis.org
1, 1, 1, 10, 79, 946, 14653, 267478, 5817187, 145061146, 4089128425, 128703410254, 4470302200087, 169912192575490, 7014628977829237, 312570024564324358, 14952747796689292747, 764341021646724256426, 41578052013117358139809, 2398149800670737138081470
Offset: 0
-
a(n) = sum(k=0, (3*n+1)\4, (3*n-3*k)!/(3*n-4*k+1)!*stirling(n, k, 2));
A377339
E.g.f. satisfies A(x) = ( 1 + (exp(x*A(x)) - 1)/A(x) )^2.
Original entry on oeis.org
1, 2, 4, 20, 144, 1332, 15920, 225332, 3758272, 71711540, 1544139216, 37040248500, 979378764320, 28308318200372, 887957701803952, 30043664101434164, 1090686549233837952, 42290355849577306932, 1744321111108101722768, 76261355010301941319604
Offset: 0
-
a(n) = 2*sum(k=0, (2*n+2)\3, (2*n-2*k+1)!/(2*n-3*k+2)!*stirling(n, k, 2));
A377340
E.g.f. satisfies A(x) = ( 1 + (exp(x*A(x)) - 1)/A(x) )^3.
Original entry on oeis.org
1, 3, 9, 54, 531, 6498, 101925, 1920222, 42251391, 1067567850, 30411486441, 965077330374, 33764590958571, 1291198144146498, 53587639922183757, 2398901329112787630, 115225387686206361495, 5911249981088653607898, 322592377196349009882513
Offset: 0
-
a(n) = 3*sum(k=0, (3*n+3)\4, (3*n-3*k+2)!/(3*n-4*k+3)!*stirling(n, k, 2));
Showing 1-5 of 5 results.