A377382 a(n) is the smallest number k for which exactly n of its divisors are interprime numbers (A024675).
1, 4, 52, 12, 162, 36, 60, 120, 240, 300, 180, 600, 360, 1560, 720, 1260, 1440, 1620, 2520, 2880, 3240, 5040, 10920, 6300, 9360, 10080, 12960, 12600, 15840, 20160, 22680, 25200, 31680, 39600, 27720, 59400, 50400, 70560, 56700, 79200, 55440, 65520, 83160, 100800
Offset: 0
Keywords
Examples
Because A024675(1) = 4 it follows that a(0) = 1 and a(1) = 4. a(2) = 52 because 52 has the divisors 4 = A024675(1), 26 = A024675(8) and no number from 1 to 51 has exactly two interprime divisors.
Programs
-
Magma
ipr:=func
; a:=[]; for n in [0..43] do k:=1; while #[d:d in Divisors(k)|ipr(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a; -
Mathematica
d[n_] := DivisorSum[n, 1 &, CompositeQ[#] && NextPrime[#] + NextPrime[#, -1] == 2*# &]; seq[len_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len, i = d[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[44] (* Amiram Eldar, Dec 11 2024 *)