cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377391 Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 - x*log(1-x))^3 ).

Original entry on oeis.org

1, 0, 6, 9, 528, 3150, 157032, 2060100, 102770112, 2276373456, 120136435200, 3868551141840, 221493499198848, 9438561453784320, 592954244405195904, 31417910131585330080, 2173884244961012121600, 137231093173511486016000, 10452538023125775799541760
Offset: 0

Views

Author

Seiichi Manyama, Oct 27 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*n!*(3*n+2)!*sum(k=0, n\2, abs(stirling(n-k, k, 1))/((n-k)!*(3*n-k+3)!));

Formula

E.g.f. A(x) satisfies A(x) = ( 1 - x*A(x)*log(1 - x*A(x)) )^3.
E.g.f.: B(x)^3, where B(x) is the e.g.f. of A371231.
a(n) = 3 * n! * (3*n+2)! * Sum_{k=0..floor(n/2)} |Stirling1(n-k,k)|/( (n-k)! * (3*n-k+3)! ).

A377685 E.g.f. satisfies A(x) = (1 - x * log(1 - x*A(x)))^2.

Original entry on oeis.org

1, 0, 4, 6, 136, 900, 16308, 229320, 4691104, 99156960, 2481162480, 67862678400, 2063842827264, 68473763804160, 2468786906210688, 96048626176339200, 4010912604492410880, 178968539487145282560, 8496991445958129576960, 427734144995749047152640
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*n!*sum(k=0, n\2, (2*n-2*k+1)!*abs(stirling(n-k, k, 1))/((n-k)!*(2*n-3*k+2)!));

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A371227.
a(n) = 2 * n! * Sum_{k=0..floor(n/2)} (2*n-2*k+1)! * |Stirling1(n-k,k)|/( (n-k)! * (2*n-3*k+2)! ).
Showing 1-2 of 2 results.