A377406 Primes which are sums of a prime triple (p, p+4, p+6).
31, 211, 1381, 3271, 4999, 6421, 8059, 9769, 10399, 11551, 16249, 20479, 23269, 23629, 27031, 28309, 33349, 35491, 39019, 54139, 63949, 70879, 106591, 109579, 116131, 127219, 130729, 141439, 142969, 150151, 151771, 153589, 163741, 167449, 169591, 195511, 205339, 208489, 210361, 216679, 222601, 224149
Offset: 1
Keywords
Examples
The first term is 31, the sum of the triple (7, 11, 13). The second term is 211, the sum of the triple (67, 71, 73).
Programs
-
Maple
q:= p-> andmap(isprime, (t->[p, t, t-4, t+2])((p+2)/3)): select(q, [6*i+1$i=1..50000])[]; # Alois P. Heinz, Nov 13 2024
-
Mathematica
Select[Total /@ Select[Partition[Prime[Range[7500]], 3, 1], Differences[#] == {4, 2} &], PrimeQ] (* Amiram Eldar, Oct 31 2024 *)
-
Python
from sympy import isprime sums = set() for n in range(100000): if isprime(n) and isprime(n+4) and isprime(n+6) and isprime(3*n+10): sums.add(3*n+10) print(sorted(sums))
Formula
a(n) mod 6 = 1.
Comments