cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377426 E.g.f. satisfies A(x) = 1/(1 + log(1 - x*A(x)^4)).

Original entry on oeis.org

1, 1, 11, 254, 9096, 443874, 27487034, 2065181880, 182545878152, 18562391987880, 2134764133508832, 273978733525211472, 38820518588599921200, 6019219063397716575840, 1013766602891962529642832, 184300120562198063868474624, 35971439241165448281366023424
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (4*n+k)!*abs(stirling(n, k, 1)))/(4*n+1)!;

Formula

a(n) = (1/(4*n+1)!) * Sum_{k=0..n} (4*n+k)! * |Stirling1(n,k)|.

A377427 E.g.f. satisfies A(x) = 1/(1 + log(1 - x*A(x)^2))^2.

Original entry on oeis.org

1, 2, 24, 574, 20950, 1034588, 64592556, 4881978904, 433485612000, 44236604978112, 5102049359506176, 656355318561027072, 93184708368255490896, 14472905373087118415040, 2441090221004851173202080, 444344375119629711627403776, 86822659466273927313499224192
Offset: 0

Views

Author

Seiichi Manyama, Oct 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, (4*n+k+1)!*abs(stirling(n, k, 1)))/(4*n+2)!;

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A377426.
a(n) = (2/(4*n+2)!) * Sum_{k=0..n} (4*n+k+1)! * |Stirling1(n,k)|.
Showing 1-2 of 2 results.