A377435 Number of perfect-powers x in the range 2^n <= x < 2^(n+1).
1, 0, 1, 2, 3, 3, 5, 7, 8, 11, 16, 24, 32, 42, 61, 82, 118, 166, 231, 322, 453, 635, 892, 1253, 1767, 2487, 3505, 4936, 6959, 9816, 13850, 19538, 27578, 38933, 54972, 77641, 109668, 154922, 218879, 309277, 437047, 617658, 872968, 1233896, 1744153, 2465547, 3485478
Offset: 0
Keywords
Examples
The perfect-powers in each prescribed range (rows): 1 . 4 8 9 16 25 27 32 36 49 64 81 100 121 125 128 144 169 196 216 225 243 256 289 324 343 361 400 441 484 512 529 576 625 676 729 784 841 900 961 1000 Their binary expansions (columns): 1 . 100 1000 10000 100000 1000000 10000000 100000000 1001 11001 100100 1010001 10010000 100100001 11011 110001 1100100 10101001 101000100 1111001 11000100 101010111 1111101 11011000 101101001 11100001 110010000 11110011 110111001 111100100
Crossrefs
The version for squarefree numbers is A077643.
These are the first differences of A188951.
The version for prime-powers is A244508.
Not counting powers of 2 gives A377467.
The version for non-perfect-powers is A377701.
A081676 gives the greatest perfect-power <= n.
A131605 lists perfect-powers that are not prime-powers.
A377468 gives the least perfect-power > n.
Programs
-
Mathematica
perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1; Table[Length[Select[Range[2^n,2^(n+1)-1],perpowQ]],{n,0,15}]
-
Python
from sympy import mobius, integer_nthroot def A377435(n): if n==0: return 1 def f(x): return int(1-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) return f((1<
Chai Wah Wu, Nov 05 2024
Formula
For n != 1, a(n) = A377467(n) + 1.
Extensions
a(26)-a(46) from Chai Wah Wu, Nov 05 2024
Comments