cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377443 Triangular array T(n,k) read by rows, satisfies A377441(n, k+2) = Sum_{m=0..k} T(k, m)*n^m.

Original entry on oeis.org

2, 5, 1, 14, 6, 1, 42, 27, 8, 1, 132, 111, 45, 10, 1, 429, 441, 222, 67, 12, 1, 1430, 1728, 1029, 382, 93, 14, 1, 4862, 6733, 4608, 2005, 599, 123, 16, 1, 16796, 26181, 20199, 10018, 3495, 881, 157, 18, 1, 58786, 101763, 87270, 48445, 19188, 5641, 1236, 195, 20, 1
Offset: 0

Views

Author

Thomas Scheuerle, Nov 04 2024

Keywords

Examples

			Triangle T(n, k) starts:
[0]     2
[1]     5,      1
[2]    14,      6,     1
[3]    42,     27,     8,     1
[4]   132,    111,    45,    10,     1
[5]   429,    441,   222,    67,    12,    1
[6]  1430,   1728,  1029,   382,    93,   14,    1
[7]  4862,   6733,  4608,  2005,   599,  123,   16,   1
[8] 16796,  26181, 20199, 10018,  3495,  881,  157,  18,  1
[9] 58786, 101763, 87270, 48445, 19188, 5641, 1236, 195, 20, 1
		

Crossrefs

Cf. A254316 (row sums).

Programs

  • PARI
    A377441(n, max_k) = Vec(-2*((n+1)*x-1)/((x-1)*(n*x-1)+((n*x^2-(n+1)*x+1)^2-4*x*(x-1)*((n+1)*x-1)+O(x^max_k))^(1/2)))
    T(n, k) = Vec(A377441(y, n+5)[n+3])[n-k+1]
    
  • PARI
    A091894(n, k) = 2^(n-2*k-1)*binomial(n-1, 2*k)*(binomial(2*k, k)/(k + 1))
    A175136(n, k) = sum(m=0,(n - k)/2,A091894(n-k, m)*binomial(n-m-1, n-k))
    T(n, k) = sum(m=1, n+1-k, A175136(n+2-k, n-m+2-k)*binomial(m+k-1, m-1))+(k==0)

Formula

G.f.: (-(y*x^3-(y+1)*x^2+2*x+1) + sqrt((y*x^3-(y+1)*x^2+x)^2 - 4*(x^3-x^2)*((y+1)*x^2-x)))/(2*(x^3-x^2))/x^2.
T(n, 0) = A000108(n+2).
T(n, 1) = A371965(n+2).
T(n, 2) G.f.: x^2*1/( (x - 1)^2*(1 - 4*x)^(3/2) ).
T(n, 3) G.f.: x^3*(3*x - 1)/( (x - 1)^3*(1 - 4*x)^(5/2) ).
T(n, 4) G.f.: x^4*(x^3 + (3*x - 1)^2)/( (x - 1)^4*(1 - 4*x)^(7/2) ).
T(n, 5) G.f.: x^5*(3*x^3*(3*y - 1) + (3*x - 1)^3)/( (x - 1)^5*(1 - 4*x)^(9/2) ).
T(n, 6) G.f.: x^6*(2*x^6 + 6*x^3*(3*x - 1)^2 + (3*x - 1)^4)/( (x - 1)^6*(1 - 4*x)^(11/2) ).
T(n, 7) G.f.: x^7*(10*x^6*(3*x - 1) + 10*x^3*(3*x - 1)^3 + (3*x - 1)^5)/( (x - 1)^7*(1 - 4*x)^(13/2) ).
0 = Sum_{n=0..k} T(n+k, n)*(-1)^n*binomial(k, n).
The diagonal k terms below main diagonal has G.f.: 1 + Sum_{m=1..k+1} A175136(k+2, k-m+2)*(1 - x)^k.
T(n+k, n) = Sum_{m=1..k+1} A175136(k+2, k-m+2)*binomial(m+n-1, m-1), for k > 0.