A377476 Primes p such that 1..12 are quadratic residues modulo p.
479, 1151, 1319, 1559, 2351, 2689, 2999, 3529, 3671, 3911, 4751, 4919, 5519, 5569, 5711, 6551, 6599, 7559, 7561, 7681, 8089, 8761, 8951, 9239, 9241, 9601, 9719, 9769, 10391, 10559, 10799, 12049, 12239, 12721, 12911, 13151, 13729, 14159, 14281, 14759, 14951, 15671, 15791, 16631, 16921
Offset: 1
Keywords
Examples
479 is a term of this sequence, since Legendre(b|479) = 1 for b = 1, 2, ..., 12.
Links
- Steven Lu, Congruence classes modulo 9240 of the terms
Programs
-
Mathematica
Select[Prime /@ Range[2000], And @@ Table[KroneckerSymbol[b, #] == 1, {b, Range[12]}] &]
-
PARI
isok(p)={for(i=1, 12, if(kronecker(i,p)<0, return(0))); isprime(p)} \\ Andrew Howroyd, Feb 17 2025
Comments