cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377551 E.g.f. satisfies A(x) = 1/(1 - x * exp(x*A(x)))^4.

Original entry on oeis.org

1, 4, 28, 348, 6424, 156900, 4788024, 175678468, 7538078944, 370557062532, 20540717542120, 1267858489975044, 86252943572785488, 6412719306748404676, 517341051818833834648, 45012757582472804739780, 4201834386001491870902464, 418891045572216881436564228
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 4*n!*sum(k=0, n, k^(n-k)*binomial(4*n-3*k+4, k)/((4*n-3*k+4)*(n-k)!));

Formula

E.g.f.: B(x)^4, where B(x) is the e.g.f. of A377550.
a(n) = 4 * n! * Sum_{k=0..n} k^(n-k) * binomial(4*n-3*k+4,k)/( (4*n-3*k+4)*(n-k)! ).

A377550 E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x*A(x)^4).

Original entry on oeis.org

1, 1, 4, 45, 772, 17865, 525966, 18794881, 790175128, 38221092657, 2091074167450, 127675964340441, 8606833626646740, 634928943628432921, 50878715440232312374, 4400937219238706030865, 408700742920092110904496, 40558224679468186878237153, 4283310197644529184427059378
Offset: 0

Views

Author

Seiichi Manyama, Oct 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(4*n-3*k+1, k)/((4*n-3*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(4*n-3*k+1,k)/( (4*n-3*k+1)*(n-k)! ).
Showing 1-2 of 2 results.