A377580 E.g.f. satisfies A(x) = (1 + x * exp(x*A(x)^2))^2.
1, 2, 6, 66, 920, 17450, 425772, 12443438, 428469456, 16947065682, 757343738900, 37752522755222, 2076633137032632, 124956870908294906, 8165077881669520476, 575775223046122068510, 43582446983541508540832, 3524622951250814296207010, 303306411871327203664657956
Offset: 0
Keywords
Programs
-
PARI
a(n) = n!*sum(k=0, n, k^(n-k)*binomial(4*n-4*k+2, k)/((2*n-2*k+1)*(n-k)!));
Formula
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A377581.
a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(4*n-4*k+2,k)/( (2*n-2*k+1)*(n-k)! ).