A377607 Positive integers D such that the generalized Pell equation X^2 - D Y^2 = 3 is solvable over the integers.
1, 6, 13, 22, 33, 46, 61, 69, 73, 78, 94, 97, 109, 118, 141, 157, 166, 177, 181, 193, 213, 214, 222, 241, 249, 253, 262, 277, 286, 313, 321, 334, 337, 358, 366, 382, 393, 397, 409, 421, 429, 433, 438, 454, 457, 478, 481, 501, 502, 517, 526, 537, 541, 573, 598, 601, 613, 622, 649, 654, 661
Offset: 1
Keywords
Examples
The first fundamental solutions [x(n), y(n)] are (the first entry gives D(n)=a(n)): [1, [2, 1]], [6, [3, 1]], [13, [4, 1]], [22, [5, 1]], [33, [6, 1]], [46, [7, 1]], [61, [8, 1]], [69, [108, 13]], [73, [94, 11]], [78, [9, 1]], [94, [223, 23]], [97, [10, 1]], [109, [9532, 913]], [118, [11, 1]], [141, [12, 1]], [157, [289580, 23111]], [166, [13, 1]], [177, [306, 23]], [181, [148, 11]], [193, [14, 1]], ...
Links
- Robin Visser, Table of n, a(n) for n = 1..10000
- Dario Alpern, Generic two integer variable equation solver.
- Eric Weisstein's World of Mathematics, Pell Equation.
Programs
-
Python
from itertools import count, islice from sympy.solvers.diophantine.diophantine import diop_DN def A377607_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda d:len(diop_DN(d,3)), count(max(startvalue,1))) A377607_list = list(islice(A377607_gen(),61)) # Chai Wah Wu, Nov 03 2024
Comments