cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A382034 E.g.f. A(x) satisfies A(x) = exp(x*B(x*A(x))^4), where B(x) = 1 + x*B(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 9, 181, 5713, 246881, 13570081, 906180997, 71250724833, 6448375469665, 660286026034561, 75472025139452261, 9525947428687403473, 1315935073971181422721, 197485196722573989608289, 31993978774204625549549221, 5565216938342017912128576961, 1034506012356981473110554574145
Offset: 0

Views

Author

Seiichi Manyama, Mar 12 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, (n-1)!*sum(k=0, n-1, (k+1)^(n-k-1)*binomial(4*n, k)/(n-k-1)!));

Formula

a(n) = (n-1)! * Sum_{k=0..n-1} (k+1)^(n-k-1) * binomial(4*n,k)/(n-k-1)! for n > 0.
Let F(x) be the e.g.f. of A377630. F(x) = log(A(x))/x = B(x*A(x))^4.
E.g.f.: A(x) = exp( Series_Reversion( x/(1 + x*exp(x))^4 ) ).

A377633 E.g.f. satisfies A(x) = (1 + x * A(x)^2 * exp(x*A(x)^2))^2.

Original entry on oeis.org

1, 2, 22, 474, 15512, 685450, 38251212, 2582466950, 204744089104, 18650699228754, 1919767092675860, 220378941471652942, 27916112634179586456, 3868191824049865945178, 582034397153512353488284, 94509039130326185624148150, 16472375319790734221438146592, 3067435511995844132675459958178
Offset: 0

Views

Author

Seiichi Manyama, Nov 02 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(4*n+2, k)/(n-k)!)/(2*n+1);

Formula

E.g.f.: B(x)^2, where B(x) is the e.g.f. of A364989.
a(n) = (n!/(2*n+1)) * Sum_{k=0..n} k^(n-k) * binomial(4*n+2,k)/(n-k)!.
Showing 1-2 of 2 results.