A377658
a(n) = Sum_{k=0 .. n} Sum_{j=0 .. k} tan(j*Pi/(1 + 2*k))^(2*(n - k)). Antidiagonal sums of A377657.
Original entry on oeis.org
1, 2, 6, 23, 143, 1344, 16476, 248509, 4519021, 97094158, 2419043330, 68973522675, 2228418011291, 80844520830828, 3266496719516152, 145973848760893369, 7172279845906943513, 385419654638220638810, 22543794177677289243966, 1429137150185034529444879, 97815341290407924477479399
Offset: 0
-
a := n -> add(add(tan(j*Pi/(1 + 2*k))^(2*(n - k)), j = 0..k), k = 0..n):
seq(round(evalf(a(n), 64)), n = 0..20);
-
a(n) = { sum(k=0, n, trace(matcompanion(sum(m=0, k, x^m*binomial(2*k+1, 2*(k-m))*(-1)^(m+1)))^(n-k))+((n-k)==0)) } \\ Thomas Scheuerle, Nov 11 2024
A376777
a(n) = Sum_{k=0..n} tan(k*Pi/(1+2*n))^(2*n).
Original entry on oeis.org
1, 3, 90, 7077, 1070244, 264893255, 97371674686, 49810055605065, 33841518448166024, 29482777900878972939, 32045566134755984390370, 42511262856482596083333613, 67601184141908795841006166700, 126937986415384594402633688922447, 277898987279628989741077214849901894
Offset: 0
- Bill Gosper, Email to N. J. A. Sloane, Nov 02 2024.
- Shigeichi Moriguchi, Kanehisa Udagawa, Shin Hitotsumatsu, "Mathematics Formulas II", Iwanami Shoten, Publishers (1957), p. 14.
-
using Nemo
RR = ArbField(1000)
function F(n)
sum(RR(tanpi(QQBar(k) / (1 + 2 * n))^(2 * n)) for k in 0:n)
end
a(n) = unique_integer(F(n))[2]
println([a(n) for n in 0:14]) # Peter Luschny, Nov 10 2024
-
(* See Gosper link for his original Mathematica code. *)
a[0] = 1; a[n_] := ToNumberField@ Sum[Tan[k*Pi/(2*n + 1)]^(2*n), {k, 0, n}]; Array[a, 15, 0] (* Amiram Eldar, Nov 10 2024 *)
-
a(n) = { polsym(sum(m=0, n, x^m*binomial(2*n+1, 2*(n-m))*(-1)^(m+1)), n)[n+1]+(n==0) } \\ Thomas Scheuerle, Nov 11 2024
Showing 1-2 of 2 results.
Comments