cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377661 Triangle read by rows: T(n, k) = e*Gamma(n - k + 1, 1)*binomial(n, k)^2.

Original entry on oeis.org

1, 2, 1, 5, 8, 1, 16, 45, 18, 1, 65, 256, 180, 32, 1, 326, 1625, 1600, 500, 50, 1, 1957, 11736, 14625, 6400, 1125, 72, 1, 13700, 95893, 143766, 79625, 19600, 2205, 98, 1, 109601, 876800, 1534288, 1022336, 318500, 50176, 3920, 128, 1
Offset: 0

Views

Author

Peter Luschny, Nov 03 2024

Keywords

Examples

			Triangle starts:
[0]      1;
[1]      2,      1;
[2]      5,      8,       1;
[3]     16,     45,      18,       1;
[4]     65,    256,     180,      32,      1;
[5]    326,   1625,    1600,     500,     50,     1;
[6]   1957,  11736,   14625,    6400,   1125,    72,    1;
[7]  13700,  95893,  143766,   79625,  19600,  2205,   98,   1;
[8] 109601, 876800, 1534288, 1022336, 318500, 50176, 3920, 128, 1;
		

Crossrefs

Cf. A000522 (column 0), A001105 (subdiagonal), A377662 (row sums), A073107.

Programs

  • Maple
    T := (n, k) -> exp(1)*GAMMA(n - k + 1, 1)*binomial(n, k)^2:
    seq(seq(simplify(T(n, k)), k = 0..n), n=0..8);
    # Alternative:
    A377661 := (n, k) -> n!*binomial(n,k)*add(1/(k!*(j-k)!), j = k..n):
    for n from 0 to 8 do seq(A377661(n, k), k = 0..n) od;
    # Or:
    T := (n, k) -> binomial(n, k)^2 * KummerU(k - n, k - n, 1):
    for n from 0 to 8 do seq(simplify(T(n, k)), k= 0..n) od;
  • Mathematica
    T[n_, k_] := E Binomial[n, k]^2 Gamma[1 - k + n, 1];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
  • Python
    from math import comb, isqrt, factorial
    def A377661(n):
        a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
        b = n-comb(a+1,2)
        fa, fb = factorial(a), factorial(b)
        return comb(a,b)*sum(fa//(fb*factorial(j-b)) for j in range(b,a+1)) # Chai Wah Wu, Nov 12 2024

Formula

T(n, k) = binomial(n, k)*Sum_{j=k..n} n!/(k!*(j-k)!).
T(n, k) = binomial(n, k)^2 * KummerU(k - n, k - n, 1).
T(n, k) = binomial(n, k) * A073107(n, k).