A377663 a(n) = 2*n^3 - 3*n + 1.
1, 0, 11, 46, 117, 236, 415, 666, 1001, 1432, 1971, 2630, 3421, 4356, 5447, 6706, 8145, 9776, 11611, 13662, 15941, 18460, 21231, 24266, 27577, 31176, 35075, 39286, 43821, 48692, 53911, 59490, 65441, 71776, 78507, 85646, 93205, 101196, 109631, 118522, 127881, 137720
Offset: 0
Keywords
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Column 3 of A377666.
Programs
-
Magma
[2*n^3 - 3*n + 1 : n in [0..60]]; // Wesley Ivan Hurt, Aug 05 2025
-
Maple
a := n -> 2*n^3 - 3*n + 1: seq(a(n), n = 0..41);
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{1, 0, 11, 46},42] (* James C. McMahon, Nov 14 2024 *)
Formula
a(n) = [x^n] (-2*x^3 + 17*x^2 - 4*x + 1)/(x - 1)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Chai Wah Wu, Nov 14 2024