A377667 Square array read by antidiagonals upwards: T(i,j) is the smallest number m such that the symmetric representation of sigma, SRS(m), has maximum width 3, consists of i parts and has 2*j occurrences of maximum width 3 in its width pattern (row m of A341969).
60, 10728, 210, 315, 7620, 810, 495, 1155, 840456, 2070, 525, 28158, 945, 88410, 7290, 1275, 1995, 30555, 1575, 408150, 12810, 1287, 2625, 3003, 22365, 2835, 1313010, 45450, 6105, 3315, 10659, 18975, 382305, 11385
Offset: 1
Examples
a(8) = T(3,2) = 1155 is the smallest example whose symmetric representation of sigma has 3 parts and 4 counts of width 3 in its width pattern. Upper left hand section of table T(i, j) = m, numbers m <= 10^7, Columns j indicate 2j occurrences of width 3 in the width pattern of m. T(2, 7) > 10^7. i\j| 1 2 3 4 5 6 7 8 ... --------------------------------------------------------------------- 1 | 60 210 810 2070 7290 12810 45450 146610 2 | 10728 7620 840456 88410 408150 1313010 >10^7 8596710 3 | 315 1155 945 1575 2835 11385 8505 40095 4 | 495 28158 30555 22365 382305 296835 256095 199395 5 | 525 1995 3003 18975 15147 23925 14553 186219 6 | 1275 2625 10659 35217 132957 818363 312039 1760031 7 | 1287 3315 13125 37107 44289 195415 482937 258687 8 | 6105 3861 31875 65625 132153 149435 807495 1426113 9 | 3591 10773 56889 66861 254065 797979 319599 2199477 10 | 6783 16443 57477 222999 417175 1540875 768339 4670991 11 | 18963 35397 106191 965979 1025973 1770783 2489151 7547427 12 | 90801 58653 47481 1223365 2449785 4600617 ... ... 13 | 152019 107457 817209 2213253 1740081 4310481 14 | 257397 297087 410571 3086349 3552213 5170055 15 | 335225 815409 1360989 2079609 ... ... 16 | 1523319 2600283 1642557 2563239 17 | 1473725 1739375 4116777 ... 18 | 4008125 3826625 3687475 19 | 7576085 7937875 ... ... ... ...
Programs
-
Mathematica
(* widthPattern[ ] and its support functions are defined in A376829 *) t377667[b_, {r_, c_}] := Module[{t=ConstantArray[0, {r, c}], k, wP, c3, p3}, For[k=1, k<=b, k++, wP=widthPattern[k]; If[Max[wP]==3, c3=Count[wP, 3]; If[EvenQ[c3]&&c3<=2c, c3/=2; p3=Length[Select[SplitBy[wP, #!=0&], First[#]!=0&]]; If[p3<=r &&t[[p3, c3]]==0, t[[p3, c3]]=k]]]]; t] t377667[1540875, {10, 6}] (* complete 10 x 6 upper left hand section of table *)
Comments