cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377692 E.g.f. satisfies A(x) = (1 - log(1 - x) * A(x))^2.

Original entry on oeis.org

1, 2, 12, 118, 1634, 29408, 654040, 17362056, 536410200, 18922946928, 750902659200, 33118793900784, 1607673329621712, 85192554602094912, 4894219487974911552, 303021216528999244416, 20116223556200658052992, 1425479651299747192856832, 107400336067263661850548224
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, (2*k+1)!/(k+2)!*abs(stirling(n, k, 1)));

Formula

E.g.f.: 4/(1 + sqrt(1 + 4*log(1-x)))^2.
E.g.f.: B(x)^2, where B(x) is the e.g.f. of A052803.
a(n) = 2 * Sum_{k=0..n} (2*k+1)!/(k+2)! * |Stirling1(n,k)|.
a(n) ~ 2^(7/2) * n^(n-1) / ((exp(1/4) - 1)^(n - 1/2) * exp(3*n/4)). - Vaclav Kotesovec, Aug 27 2025

A377717 E.g.f. satisfies A(x) = (1 + (exp(x) - 1) * A(x))^3.

Original entry on oeis.org

1, 3, 27, 405, 8703, 245493, 8608167, 361640205, 17727268383, 993980112453, 62774530115607, 4410751512076605, 341353603094403663, 28856102576884010613, 2645807719152819131847, 261551674681092859354605, 27732033282190658330940543, 3139533157528775981685527973
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3*sum(k=0, n, (3*k+2)!/(2*k+3)!*stirling(n, k, 2));

Formula

E.g.f.: B(x)^3, where B(x) is the e.g.f. of A367161.
a(n) = 3 * Sum_{k=0..n} (3*k+2)!/(2*k+3)! * Stirling2(n,k).
Showing 1-2 of 2 results.