A377701 Number of non-perfect-powers x in the range 2^n < x < 2^(n+1).
0, 1, 3, 6, 13, 29, 59, 121, 248, 501, 1008, 2024, 4064, 8150, 16323, 32686, 65418, 130906, 261913, 523966, 1048123, 2096517, 4193412, 8387355, 16775449, 33551945, 67105359, 134212792, 268428497, 536861096, 1073727974, 2147464110, 4294939718, 8589895659
Offset: 0
Keywords
Examples
The non-perfect-powers in each range (rows): . 3 5 6 7 10 11 12 13 14 15 17 18 19 20 21 22 23 24 26 28 29 30 31 Their binary expansions (columns): . 11 101 1010 10001 110 1011 10010 111 1100 10011 1101 10100 1110 10101 1111 10110 10111 11000 11010 11100 11101 11110 11111
Crossrefs
Programs
-
Mathematica
radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1; Table[Length[Select[Range[2^n+1, 2^(n+1)-1],radQ]],{n,0,15}]
-
Python
from sympy import mobius, integer_nthroot def A377701(n): def f(x): return int(x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) return f((1<
Chai Wah Wu, Nov 06 2024
Formula
a(n) = 2^n-1-A377467(n). - Pontus von Brömssen, Nov 06 2024
Extensions
Offset corrected by, and a(16)-a(33) from Pontus von Brömssen, Nov 06 2024
Comments