A377704 a(n) = binomial(Fibonacci(n)+Fibonacci(n+1)-2,Fibonacci(n)-1).
1, 1, 3, 15, 330, 50388, 225792840, 202355008436035, 1051518440185020535448910, 6295006026005594769305465540976338825800, 250690498666352364302787619036257555981545221373940020366174361300, 76323919118339641225070197870691336391548146418602896138838604379490915124967820851616650659494440178513500
Offset: 1
Keywords
Links
- Paolo Xausa, Table of n, a(n) for n = 1..16
- Eric Weisstein's World of Mathematics, Staircase Walk
Crossrefs
Programs
-
Mathematica
Table[Binomial[Fibonacci[n+2] - 2, Fibonacci[n] - 1], {n, 12}] (* Paolo Xausa, Nov 24 2024 *)
-
Python
from sympy import binomial, fibonacci a = lambda n: binomial(fibonacci(n+2)-2,fibonacci(n)-1) print([a(n) for n in range(1, 13)])
-
Python
from math import comb from gmpy2 import fib2 def A377704(n): return comb(*(lambda x:(x[0]-2,x[1]-1))(fib2(n+2))) # Chai Wah Wu, Nov 22 2024
Formula
a(n) = binomial(Fibonacci(n)+Fibonacci(n+1)-2,Fibonacci(n)-1).
a(n) = binomial(Fibonacci(n+2)-2,Fibonacci(n)-1).
a(n) >= Sum_{k=1..n-1} a(k) for n > 1.
a(n) = binomial(Fibonacci(n+2)-2,Fibonacci(n+1)-1). - Chai Wah Wu, Nov 22 2024
Comments