A377726 Lengths of the long leg of the unique primitive Pythagorean triple (x,y,z) such that (x-y+z)/2 is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
84, 3280, 113764, 3878112, 131820084, 4478459440, 152138450884, 5168244315840, 175568258308884, 5964153062868112, 202605638937276964, 6882627588628286880, 233806732478308836084, 7942546277279354556400, 269812766698548756220804, 9165691521493946935370112
Offset: 1
Examples
Triangles begins: n=1: 13, 84, 85; n=2: 81, 3280, 3281; n=3: 477, 113764, 113765; ... This sequence gives the middle column.
References
- Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
Programs
-
Mathematica
ra[n_]:=ra[n]=Module[{ra},ra=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;{2ra-1,2ra^2-2ra,2ra^2-2ra+1}];exradio={};Do[exradio=Join[exradio,FullSimplify[ra[n]]],{n,0,10}];exradio