A377733 Numbers k such that k and k+1 are both terms in A377732.
3, 63, 154, 155, 323, 579, 583, 903, 978, 1023, 2019, 2499, 3503, 5174, 5183, 5379, 8234, 9603, 11534, 12415, 14718, 16383, 20454, 20538, 26243, 31930, 39999, 46814, 58563, 69719, 82943, 90218, 93995, 96663, 102943, 114243, 117998, 118979, 124118, 135814, 138490, 149879
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..5242 (terms below 10^10)
- Jean-Marie De Koninck, A. Arthur Bonkli Razafindrasoanaivolala, and Hans Schmidt Ramiliarimanana, Integers with a sum of co-divisors yielding a square, Research in Number Theory, Vol. 10, No. 2 (2024), Article 30; author's copy.
Programs
-
Mathematica
q[k_] := q[k] = If[IntegerQ[Sqrt[k]], IntegerQ[Sqrt[2*Sqrt[k]]], Module[{d = Divisors[k], nh}, nh = Length[d]/2; IntegerQ[Sqrt[d[[nh]] + d[[nh + 1]]]]]]; Select[Range[150000], q[#] && q[#+1] &]
-
PARI
is1(k) = if(issquare(k), issquare(2 * sqrtint(k)), my(d = divisors(k), nh = #d/2); issquare(d[nh] + d[nh + 1])); lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}
Comments