A377805 Decimal expansion of the volume of a snub dodecahedron with unit edge length.
3, 7, 6, 1, 6, 6, 4, 9, 9, 6, 2, 7, 3, 3, 3, 6, 2, 9, 7, 5, 7, 7, 7, 6, 7, 3, 6, 7, 1, 3, 0, 2, 7, 1, 4, 3, 4, 0, 3, 5, 5, 2, 8, 9, 8, 7, 3, 4, 8, 8, 0, 9, 8, 9, 6, 0, 4, 9, 6, 8, 9, 7, 3, 0, 2, 9, 9, 3, 6, 2, 0, 0, 7, 5, 7, 8, 7, 6, 4, 1, 6, 7, 9, 4, 6, 0, 9, 2, 9, 4
Offset: 2
Examples
37.616649962733362975777673671302714340355289873...
Links
- Eric Weisstein's World of Mathematics, Snub Dodecahedron.
- Wikipedia, Snub dodecahedron.
- Index entries for algebraic numbers, degree 12.
Crossrefs
Programs
-
Mathematica
First[RealDigits[((3*GoldenRatio + 1)*#*(# + 1) - GoldenRatio/6 - 2)/Sqrt[3*#^2 - GoldenRatio^2], 10, 100]] & [Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]] (* or *) First[RealDigits[PolyhedronData["SnubDodecahedron", "Volume"], 10, 100]]
Formula
Equals ((3*phi + 1)*xi*(xi + 1) - phi/6 - 2)/sqrt(3*xi^2 - phi^2) = (A090550*xi*(xi + 1) - A134946 - 2)/sqrt(3*xi^2 - A104457), where phi = A001622 and xi = A377849.
Equals the largest real root of 2176782336*x^12 - 3195335070720*x^10 + 162223191936000*x^8 + 1030526618040000*x^6 + 6152923794150000*x^4 - 182124351550575000*x^2 + 187445810737515625.