A379889 Decimal expansion of the volume of a pentagonal hexecontahedron with unit shorter edge length.
1, 8, 9, 7, 8, 9, 8, 5, 2, 0, 6, 6, 8, 8, 5, 2, 7, 9, 1, 0, 6, 3, 2, 3, 0, 8, 6, 1, 9, 4, 4, 7, 3, 7, 9, 6, 9, 9, 1, 0, 6, 0, 3, 3, 6, 2, 9, 7, 3, 6, 1, 1, 5, 6, 6, 1, 4, 6, 7, 9, 8, 0, 6, 7, 5, 5, 7, 5, 7, 4, 0, 4, 9, 5, 6, 8, 6, 8, 1, 3, 6, 9, 9, 0, 1, 0, 4, 0, 1, 9
Offset: 3
Examples
189.78985206688527910632308619447379699106033629736...
Links
- Paolo Xausa, Table of n, a(n) for n = 3..10000
- Eric Weisstein's World of Mathematics, Pentagonal Hexecontahedron.
- Wikipedia, Pentagonal hexecontahedron.
- Index entries for algebraic numbers, degree 12.
Crossrefs
Programs
-
Mathematica
First[RealDigits[Root[3936256*#^12 - 143719449600*#^10 + 69717538560000*#^8 - 965464153000000*#^6 - 5195593956250000*#^4 - 6093827421875000*#^2 + 171855712890625 &, 8], 10, 100]] (* or *) First[RealDigits[PolyhedronData["PentagonalHexecontahedron", "Volume"], 10, 100]]
Formula
Equals 5*(1 + t)*(2 + 3*t)/((1 - 2*t^2)*sqrt(1 - 2*t)), where t = ((44 + 12*A001622*(9 + sqrt(81*A001622 - 15)))^(1/3) + (44 + 12*A001622*(9 - sqrt(81*A001622 - 15)))^(1/3) - 4)/12.
Equals the largest real root of 3936256*x^12 - 143719449600*x^10 + 69717538560000*x^8 - 965464153000000*x^6 - 5195593956250000*x^4 - 6093827421875000*x^2 + 171855712890625.
Comments