cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A377805 Decimal expansion of the volume of a snub dodecahedron with unit edge length.

Original entry on oeis.org

3, 7, 6, 1, 6, 6, 4, 9, 9, 6, 2, 7, 3, 3, 3, 6, 2, 9, 7, 5, 7, 7, 7, 6, 7, 3, 6, 7, 1, 3, 0, 2, 7, 1, 4, 3, 4, 0, 3, 5, 5, 2, 8, 9, 8, 7, 3, 4, 8, 8, 0, 9, 8, 9, 6, 0, 4, 9, 6, 8, 9, 7, 3, 0, 2, 9, 9, 3, 6, 2, 0, 0, 7, 5, 7, 8, 7, 6, 4, 1, 6, 7, 9, 4, 6, 0, 9, 2, 9, 4
Offset: 2

Views

Author

Paolo Xausa, Nov 09 2024

Keywords

Examples

			37.616649962733362975777673671302714340355289873...
		

Crossrefs

Cf. A377804 (surface area), A377806 (circumradius), A377807 (midradius).
Cf. A102769 (analogous for a regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[((3*GoldenRatio + 1)*#*(# + 1) - GoldenRatio/6 - 2)/Sqrt[3*#^2 - GoldenRatio^2], 10, 100]] & [Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "Volume"], 10, 100]]

Formula

Equals ((3*phi + 1)*xi*(xi + 1) - phi/6 - 2)/sqrt(3*xi^2 - phi^2) = (A090550*xi*(xi + 1) - A134946 - 2)/sqrt(3*xi^2 - A104457), where phi = A001622 and xi = A377849.
Equals the largest real root of 2176782336*x^12 - 3195335070720*x^10 + 162223191936000*x^8 + 1030526618040000*x^6 + 6152923794150000*x^4 - 182124351550575000*x^2 + 187445810737515625.

A379892 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a pentagonal hexecontahedron.

Original entry on oeis.org

2, 6, 7, 3, 4, 7, 3, 2, 2, 7, 1, 7, 6, 7, 8, 4, 6, 6, 8, 2, 7, 9, 0, 7, 0, 3, 3, 4, 8, 9, 5, 7, 9, 1, 7, 1, 9, 7, 8, 7, 0, 3, 1, 7, 5, 0, 2, 6, 9, 3, 4, 4, 5, 6, 5, 7, 6, 9, 9, 5, 2, 4, 5, 0, 0, 2, 2, 5, 5, 7, 4, 0, 0, 5, 4, 0, 2, 1, 6, 0, 5, 9, 9, 6, 7, 4, 7, 4, 7, 5
Offset: 1

Views

Author

Paolo Xausa, Jan 10 2025

Keywords

Comments

The pentagonal hexecontahedron is the dual polyhedron of the snub dodecahedron.

Examples

			2.6734732271767846682790703348957917197870317502693...
		

Crossrefs

Cf. A379888 (surface area), A379889 (volume), A379890 (inradius), A379891 (midradius).
Cf. A377997 and A377998 (dihedral angles of a snub dodecahedron).
Cf. A377849.

Programs

  • Mathematica
    First[RealDigits[ArcCos[#/(# - 2)] & [Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["PentagonalHexecontahedron", "DihedralAngles"]], 10, 100]]
  • PARI
    acos(polrootsreal(209*x^6 - 94*x^5 - 137*x^4 + 100*x^3 - 9*x^2 - 6*x + 1)[1]) \\ Charles R Greathouse IV, Feb 10 2025

Formula

Equals arccos(A377849/(A377849 - 2)).
Equals arccos(c), where c is the smallest real root of 209*x^6 - 94*x^5 - 137*x^4 + 100*x^3 - 9*x^2 - 6*x + 1.

A377807 Decimal expansion of the midradius of a snub dodecahedron with unit edge length.

Original entry on oeis.org

2, 0, 9, 7, 0, 5, 3, 8, 3, 5, 2, 5, 2, 0, 8, 7, 9, 9, 2, 4, 0, 3, 9, 5, 9, 0, 5, 2, 3, 4, 8, 2, 8, 6, 2, 4, 0, 0, 3, 0, 8, 3, 9, 7, 3, 0, 5, 8, 1, 0, 3, 0, 7, 6, 2, 7, 3, 1, 7, 0, 6, 1, 7, 3, 1, 2, 7, 0, 5, 2, 9, 1, 4, 2, 5, 7, 7, 7, 5, 4, 5, 5, 3, 7, 3, 4, 0, 9, 4, 8
Offset: 1

Views

Author

Paolo Xausa, Nov 10 2024

Keywords

Examples

			2.0970538352520879924039590523482862400308397305810...
		

Crossrefs

Cf. A377804 (surface area), A377805 (volume), A377806 (circumradius).
Cf. A239798 (analogous for a regular dodecahedron).
Cf. A377849.

Programs

  • Mathematica
    First[RealDigits[Sqrt[1/(1 - Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1])]/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "Midradius"], 10, 100]]

Formula

Equals sqrt(1/(1 - A377849))/2.
Equals the real root closest to 2 of 4096*x^12 - 21504*x^10 + 16384*x^8 - 4672*x^6 + 624*x^4 - 40*x^2 + 1.

A377806 Decimal expansion of the circumradius of a snub dodecahedron with unit edge length.

Original entry on oeis.org

2, 1, 5, 5, 8, 3, 7, 3, 7, 5, 1, 1, 5, 6, 3, 9, 7, 0, 1, 8, 3, 6, 6, 2, 9, 0, 7, 6, 6, 9, 3, 0, 5, 8, 2, 7, 7, 0, 1, 6, 8, 5, 1, 2, 1, 8, 7, 7, 4, 8, 1, 1, 8, 2, 2, 4, 1, 2, 2, 1, 5, 4, 3, 0, 1, 2, 0, 0, 6, 7, 0, 8, 0, 9, 4, 9, 4, 8, 4, 0, 0, 0, 5, 3, 4, 2, 9, 9, 2, 6
Offset: 1

Views

Author

Paolo Xausa, Nov 10 2024

Keywords

Examples

			2.1558373751156397018366290766930582770168512187748...
		

Crossrefs

Cf. A377804 (surface area), A377805 (volume), A377807 (midradius).
Cf. A179296 (analogous for a regular dodecahedron).
Cf. A377849.

Programs

  • Mathematica
    First[RealDigits[Sqrt[1 + 1/(1 - Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1])]/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "Circumradius"], 10, 100]]

Formula

Equals sqrt(1 + 1/(1 - A377849))/2.
Equals the real root closest to 2 of 4096*x^12 - 27648*x^10 + 47104*x^8 - 35776*x^6 + 13872*x^4 -2696*x^2 + 209.

A380002 Decimal expansion of long/short edge length ratio of a pentagonal hexecontahedron.

Original entry on oeis.org

1, 7, 4, 9, 8, 5, 2, 5, 6, 6, 7, 3, 6, 2, 0, 2, 7, 9, 1, 6, 7, 6, 4, 4, 6, 6, 9, 3, 6, 5, 5, 9, 2, 1, 1, 7, 9, 6, 4, 9, 8, 1, 5, 8, 1, 8, 5, 9, 0, 3, 7, 6, 0, 0, 4, 3, 8, 7, 8, 6, 1, 2, 6, 9, 7, 0, 3, 9, 8, 2, 5, 2, 6, 6, 0, 8, 4, 0, 1, 4, 5, 1, 4, 1, 4, 9, 0, 4, 5, 7
Offset: 1

Views

Author

Paolo Xausa, Jan 11 2025

Keywords

Examples

			1.749852566736202791676446693655921179649815818590...
		

Crossrefs

Cf. A379888 (surface area), A379889 (volume), A379890 (inradius), A379890 (midradius), A379892 (dihedral angle), A380003 and A380004 (face internal angles).
Cf. A377849.

Programs

  • Mathematica
    First[RealDigits[(1 + #)/(2 - #^2) & [Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]], 10, 100]] (* or *)
    First[RealDigits[1/Divide @@ PolyhedronData["PentagonalHexecontahedron", "EdgeLengths"], 10, 100]]

Formula

Equals (1 + xi)/(2 - xi^2), where xi = A377849.
Equals the largest real root of 31*x^6 - 122*x^5 + 177*x^4 - 128*x^3 + 51*x^2 - 11*x + 1.

A377997 Decimal expansion of the dihedral angle, in radians, between triangular faces in a snub dodecahedron.

Original entry on oeis.org

2, 8, 6, 5, 4, 0, 0, 6, 8, 8, 3, 4, 4, 7, 2, 8, 6, 0, 7, 6, 0, 4, 6, 0, 7, 3, 4, 1, 7, 3, 3, 6, 5, 6, 9, 1, 4, 1, 1, 9, 0, 0, 9, 6, 7, 2, 6, 6, 5, 2, 3, 7, 9, 6, 9, 0, 5, 9, 9, 2, 8, 5, 2, 5, 2, 2, 0, 3, 5, 8, 6, 9, 8, 3, 4, 3, 4, 2, 9, 0, 1, 8, 5, 7, 2, 8, 8, 7, 8, 0
Offset: 1

Views

Author

Paolo Xausa, Nov 15 2024

Keywords

Examples

			2.8654006883447286076046073417336569141190096726652...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi - ArcCos[2*Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]/3 + 1/3], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["SnubDodecahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals Pi - arccos((2/3)*A377849 + 1/3).
Equals Pi - arccos(c), where c is the largest real root of 729*x^6 + 486*x^5 - 729*x^4 - 756*x^3 + 63*x^2 + 270*x + 1.

A377998 Decimal expansion of the dihedral angle, in radians, between triangular and pentagonal faces in a snub dodecahedron.

Original entry on oeis.org

2, 6, 6, 9, 1, 3, 0, 6, 3, 3, 6, 2, 5, 7, 5, 6, 1, 0, 7, 7, 0, 7, 9, 4, 0, 9, 3, 5, 7, 1, 8, 2, 0, 8, 2, 3, 0, 5, 1, 8, 7, 0, 3, 7, 4, 5, 3, 5, 5, 3, 8, 0, 2, 7, 4, 2, 2, 3, 5, 0, 2, 7, 2, 6, 0, 4, 0, 0, 7, 4, 7, 2, 9, 1, 9, 0, 6, 4, 8, 3, 7, 6, 8, 8, 9, 1, 6, 5, 0, 7
Offset: 1

Views

Author

Paolo Xausa, Nov 15 2024

Keywords

Examples

			2.669130633625756107707940935718208230518703745355...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi - ArcCos[Root[91125*#^12 - 668250*#^10 + 2006775*#^8 - 2735100*#^6 + 1768275*#^4 - 502410*#^2 + 43681&, 7]], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["SnubDodecahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals Pi - arccos(sqrt((12*phi - (4*phi + 8)*xi*(xi + 1) + 19)/15)), where phi = A001622 and xi = A377849.
Equals Pi - arccos(c), where c is the real root closest to 9/10 of 91125*x^12 - 668250*x^10 + 2006775*x^8 - 2735100*x^6 + 1768275*x^4 - 502410*x^2 + 43681.
Showing 1-7 of 7 results.