cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A377805 Decimal expansion of the volume of a snub dodecahedron with unit edge length.

Original entry on oeis.org

3, 7, 6, 1, 6, 6, 4, 9, 9, 6, 2, 7, 3, 3, 3, 6, 2, 9, 7, 5, 7, 7, 7, 6, 7, 3, 6, 7, 1, 3, 0, 2, 7, 1, 4, 3, 4, 0, 3, 5, 5, 2, 8, 9, 8, 7, 3, 4, 8, 8, 0, 9, 8, 9, 6, 0, 4, 9, 6, 8, 9, 7, 3, 0, 2, 9, 9, 3, 6, 2, 0, 0, 7, 5, 7, 8, 7, 6, 4, 1, 6, 7, 9, 4, 6, 0, 9, 2, 9, 4
Offset: 2

Views

Author

Paolo Xausa, Nov 09 2024

Keywords

Examples

			37.616649962733362975777673671302714340355289873...
		

Crossrefs

Cf. A377804 (surface area), A377806 (circumradius), A377807 (midradius).
Cf. A102769 (analogous for a regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[((3*GoldenRatio + 1)*#*(# + 1) - GoldenRatio/6 - 2)/Sqrt[3*#^2 - GoldenRatio^2], 10, 100]] & [Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "Volume"], 10, 100]]

Formula

Equals ((3*phi + 1)*xi*(xi + 1) - phi/6 - 2)/sqrt(3*xi^2 - phi^2) = (A090550*xi*(xi + 1) - A134946 - 2)/sqrt(3*xi^2 - A104457), where phi = A001622 and xi = A377849.
Equals the largest real root of 2176782336*x^12 - 3195335070720*x^10 + 162223191936000*x^8 + 1030526618040000*x^6 + 6152923794150000*x^4 - 182124351550575000*x^2 + 187445810737515625.

A377804 Decimal expansion of the surface area of a snub dodecahedron with unit edge length.

Original entry on oeis.org

5, 5, 2, 8, 6, 7, 4, 4, 9, 5, 8, 4, 4, 5, 1, 4, 8, 9, 4, 3, 6, 5, 7, 0, 7, 0, 5, 5, 8, 7, 8, 0, 7, 6, 2, 5, 3, 1, 7, 4, 4, 5, 9, 5, 1, 1, 6, 3, 2, 9, 9, 9, 2, 5, 1, 1, 6, 0, 1, 2, 7, 6, 0, 7, 3, 3, 2, 5, 0, 8, 8, 2, 4, 4, 6, 8, 3, 5, 9, 5, 5, 1, 7, 6, 1, 2, 2, 1, 8, 6
Offset: 2

Views

Author

Paolo Xausa, Nov 08 2024

Keywords

Examples

			55.2867449584451489436570705587807625317445951163...
		

Crossrefs

Cf. A377805 (volume), A377806 (circumradius), A377807 (midradius).
Cf. A131595 (analogous for a regular dodecahedron).
Cf. A002194.

Programs

  • Mathematica
    First[RealDigits[20*Sqrt[3] + 3*Sqrt[25 + 10*Sqrt[5]], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 20*sqrt(3) + 3*sqrt(25 + 10*sqrt(5)) = 20*A002194 + A131595.

A377849 Decimal expansion of the real root of x^3 + 2*x^2 - phi^2, where phi is the golden ratio (A001622).

Original entry on oeis.org

9, 4, 3, 1, 5, 1, 2, 5, 9, 2, 4, 3, 8, 8, 1, 8, 1, 7, 1, 2, 6, 7, 1, 9, 8, 9, 2, 5, 7, 0, 3, 6, 4, 1, 5, 9, 4, 0, 6, 6, 5, 0, 3, 8, 6, 2, 3, 4, 5, 3, 4, 7, 0, 4, 6, 0, 4, 8, 9, 1, 2, 8, 5, 3, 9, 0, 3, 3, 6, 0, 8, 4, 8, 5, 9, 4, 9, 1, 8, 4, 4, 7, 4, 6, 7, 4, 4, 0, 9, 0
Offset: 0

Views

Author

Paolo Xausa, Nov 09 2024

Keywords

Comments

Ratio of the midradius of a snub dodecahedron to the midradius of the icosahedron in which it is inscribed (see Wikipedia article).

Examples

			0.94315125924388181712671989257036415940665038623453...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1], 10,100]]
  • PARI
    polrootsreal(x^6 + 4*x^5 + 4*x^4 - 3*x^3 - 6*x^2 + 1)[4] \\ Charles R Greathouse IV, Feb 10 2025

Formula

Equals the real root closest to 1 of x^6 + 4*x^5 + 4*x^4 - 3*x^3 - 6*x^2 + 1.

A377806 Decimal expansion of the circumradius of a snub dodecahedron with unit edge length.

Original entry on oeis.org

2, 1, 5, 5, 8, 3, 7, 3, 7, 5, 1, 1, 5, 6, 3, 9, 7, 0, 1, 8, 3, 6, 6, 2, 9, 0, 7, 6, 6, 9, 3, 0, 5, 8, 2, 7, 7, 0, 1, 6, 8, 5, 1, 2, 1, 8, 7, 7, 4, 8, 1, 1, 8, 2, 2, 4, 1, 2, 2, 1, 5, 4, 3, 0, 1, 2, 0, 0, 6, 7, 0, 8, 0, 9, 4, 9, 4, 8, 4, 0, 0, 0, 5, 3, 4, 2, 9, 9, 2, 6
Offset: 1

Views

Author

Paolo Xausa, Nov 10 2024

Keywords

Examples

			2.1558373751156397018366290766930582770168512187748...
		

Crossrefs

Cf. A377804 (surface area), A377805 (volume), A377807 (midradius).
Cf. A179296 (analogous for a regular dodecahedron).
Cf. A377849.

Programs

  • Mathematica
    First[RealDigits[Sqrt[1 + 1/(1 - Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1])]/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "Circumradius"], 10, 100]]

Formula

Equals sqrt(1 + 1/(1 - A377849))/2.
Equals the real root closest to 2 of 4096*x^12 - 27648*x^10 + 47104*x^8 - 35776*x^6 + 13872*x^4 -2696*x^2 + 209.

A379891 Decimal expansion of the midradius of a pentagonal hexecontahedron with unit shorter edge length.

Original entry on oeis.org

3, 5, 9, 7, 6, 2, 4, 8, 2, 2, 5, 5, 1, 1, 8, 9, 0, 1, 1, 4, 2, 8, 2, 5, 6, 5, 5, 9, 4, 4, 4, 4, 2, 3, 5, 3, 8, 4, 1, 1, 9, 6, 4, 5, 2, 2, 6, 6, 7, 7, 7, 1, 0, 1, 3, 4, 7, 6, 9, 9, 5, 5, 7, 8, 3, 0, 1, 6, 3, 6, 8, 7, 3, 2, 6, 0, 4, 5, 1, 3, 1, 6, 2, 5, 1, 7, 4, 2, 0, 6
Offset: 1

Views

Author

Paolo Xausa, Jan 09 2025

Keywords

Comments

The pentagonal hexecontahedron is the dual polyhedron of the snub dodecahedron.

Examples

			3.59762482255118901142825655944442353841196452...
		

Crossrefs

Cf. A379888 (surface area), A379889 (volume), A379890 (inradius), A379892 (dihedral angle).
Cf. A377807 (midradius of a snub dodecahedron with unit edge length).

Programs

  • Mathematica
    First[RealDigits[Root[4096*#^12 - 58368*#^10 + 70656*#^8 - 17728*#^6 + 1392*#^4 - 120*#^2 + 1 &, 8], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["PentagonalHexecontahedron", "Midradius"], 10, 100]]

Formula

Equals the largest real root of 4096*x^12 - 58368*x^10 + 70656*x^8 - 17728*x^6 + 1392*x^4 - 120*x^2 + 1.

A377997 Decimal expansion of the dihedral angle, in radians, between triangular faces in a snub dodecahedron.

Original entry on oeis.org

2, 8, 6, 5, 4, 0, 0, 6, 8, 8, 3, 4, 4, 7, 2, 8, 6, 0, 7, 6, 0, 4, 6, 0, 7, 3, 4, 1, 7, 3, 3, 6, 5, 6, 9, 1, 4, 1, 1, 9, 0, 0, 9, 6, 7, 2, 6, 6, 5, 2, 3, 7, 9, 6, 9, 0, 5, 9, 9, 2, 8, 5, 2, 5, 2, 2, 0, 3, 5, 8, 6, 9, 8, 3, 4, 3, 4, 2, 9, 0, 1, 8, 5, 7, 2, 8, 8, 7, 8, 0
Offset: 1

Views

Author

Paolo Xausa, Nov 15 2024

Keywords

Examples

			2.8654006883447286076046073417336569141190096726652...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi - ArcCos[2*Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]/3 + 1/3], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["SnubDodecahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals Pi - arccos((2/3)*A377849 + 1/3).
Equals Pi - arccos(c), where c is the largest real root of 729*x^6 + 486*x^5 - 729*x^4 - 756*x^3 + 63*x^2 + 270*x + 1.

A377998 Decimal expansion of the dihedral angle, in radians, between triangular and pentagonal faces in a snub dodecahedron.

Original entry on oeis.org

2, 6, 6, 9, 1, 3, 0, 6, 3, 3, 6, 2, 5, 7, 5, 6, 1, 0, 7, 7, 0, 7, 9, 4, 0, 9, 3, 5, 7, 1, 8, 2, 0, 8, 2, 3, 0, 5, 1, 8, 7, 0, 3, 7, 4, 5, 3, 5, 5, 3, 8, 0, 2, 7, 4, 2, 2, 3, 5, 0, 2, 7, 2, 6, 0, 4, 0, 0, 7, 4, 7, 2, 9, 1, 9, 0, 6, 4, 8, 3, 7, 6, 8, 8, 9, 1, 6, 5, 0, 7
Offset: 1

Views

Author

Paolo Xausa, Nov 15 2024

Keywords

Examples

			2.669130633625756107707940935718208230518703745355...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi - ArcCos[Root[91125*#^12 - 668250*#^10 + 2006775*#^8 - 2735100*#^6 + 1768275*#^4 - 502410*#^2 + 43681&, 7]], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["SnubDodecahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals Pi - arccos(sqrt((12*phi - (4*phi + 8)*xi*(xi + 1) + 19)/15)), where phi = A001622 and xi = A377849.
Equals Pi - arccos(c), where c is the real root closest to 9/10 of 91125*x^12 - 668250*x^10 + 2006775*x^8 - 2735100*x^6 + 1768275*x^4 - 502410*x^2 + 43681.
Showing 1-7 of 7 results.