cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A379888 Decimal expansion of the surface area of a pentagonal hexecontahedron with unit shorter edge length.

Original entry on oeis.org

1, 6, 2, 6, 9, 8, 9, 6, 4, 1, 9, 8, 4, 6, 6, 6, 2, 6, 7, 6, 8, 7, 2, 5, 8, 2, 4, 1, 2, 1, 3, 7, 9, 5, 9, 7, 0, 9, 7, 1, 8, 2, 2, 3, 6, 6, 4, 0, 3, 8, 2, 5, 8, 8, 3, 1, 8, 7, 7, 7, 1, 4, 4, 7, 4, 9, 3, 6, 4, 3, 1, 2, 8, 5, 5, 8, 2, 0, 1, 5, 3, 5, 7, 4, 1, 9, 8, 0, 4, 3
Offset: 3

Views

Author

Paolo Xausa, Jan 07 2025

Keywords

Comments

The pentagonal hexecontahedron is the dual polyhedron of the snub dodecahedron.

Examples

			162.69896419846662676872582412137959709718223664038...
		

Crossrefs

Cf. A379889 (volume), A379890 (inradius), A379891 (midradius), A379892 (dihedral angle).
Cf. A377804 (surface area of a snub dodecahedron with unit edge length).
Cf. A001622.

Programs

  • Mathematica
    First[RealDigits[Root[961*#^12 - 33925050*#^10 + 238487439375*#^8 - 374285139187500*#^6 + 215543322643359375*#^4 - 200764566730722656250*#^2 + 19088214930090087890625 &, 8], 10, 100]]  (* or *)
    First[RealDigits[PolyhedronData["PentagonalHexecontahedron", "SurfaceArea"], 10, 100]]

Formula

Equals 30*(2 + 3*t)*sqrt(1 - t^2)/(1 - 2*t^2), where t = ((44 + 12*A001622*(9 + sqrt(81*A001622 - 15)))^(1/3) + (44 + 12*A001622*(9 - sqrt(81*A001622 - 15)))^(1/3) - 4)/12.
Equals the largest real root of 961*x^12 - 33925050*x^10 + 238487439375*x^8 - 374285139187500*x^6 + 215543322643359375*x^4 - 200764566730722656250*x^2 + 19088214930090087890625.

A377805 Decimal expansion of the volume of a snub dodecahedron with unit edge length.

Original entry on oeis.org

3, 7, 6, 1, 6, 6, 4, 9, 9, 6, 2, 7, 3, 3, 3, 6, 2, 9, 7, 5, 7, 7, 7, 6, 7, 3, 6, 7, 1, 3, 0, 2, 7, 1, 4, 3, 4, 0, 3, 5, 5, 2, 8, 9, 8, 7, 3, 4, 8, 8, 0, 9, 8, 9, 6, 0, 4, 9, 6, 8, 9, 7, 3, 0, 2, 9, 9, 3, 6, 2, 0, 0, 7, 5, 7, 8, 7, 6, 4, 1, 6, 7, 9, 4, 6, 0, 9, 2, 9, 4
Offset: 2

Views

Author

Paolo Xausa, Nov 09 2024

Keywords

Examples

			37.616649962733362975777673671302714340355289873...
		

Crossrefs

Cf. A377804 (surface area), A377806 (circumradius), A377807 (midradius).
Cf. A102769 (analogous for a regular dodecahedron).

Programs

  • Mathematica
    First[RealDigits[((3*GoldenRatio + 1)*#*(# + 1) - GoldenRatio/6 - 2)/Sqrt[3*#^2 - GoldenRatio^2], 10, 100]] & [Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "Volume"], 10, 100]]

Formula

Equals ((3*phi + 1)*xi*(xi + 1) - phi/6 - 2)/sqrt(3*xi^2 - phi^2) = (A090550*xi*(xi + 1) - A134946 - 2)/sqrt(3*xi^2 - A104457), where phi = A001622 and xi = A377849.
Equals the largest real root of 2176782336*x^12 - 3195335070720*x^10 + 162223191936000*x^8 + 1030526618040000*x^6 + 6152923794150000*x^4 - 182124351550575000*x^2 + 187445810737515625.

A377807 Decimal expansion of the midradius of a snub dodecahedron with unit edge length.

Original entry on oeis.org

2, 0, 9, 7, 0, 5, 3, 8, 3, 5, 2, 5, 2, 0, 8, 7, 9, 9, 2, 4, 0, 3, 9, 5, 9, 0, 5, 2, 3, 4, 8, 2, 8, 6, 2, 4, 0, 0, 3, 0, 8, 3, 9, 7, 3, 0, 5, 8, 1, 0, 3, 0, 7, 6, 2, 7, 3, 1, 7, 0, 6, 1, 7, 3, 1, 2, 7, 0, 5, 2, 9, 1, 4, 2, 5, 7, 7, 7, 5, 4, 5, 5, 3, 7, 3, 4, 0, 9, 4, 8
Offset: 1

Views

Author

Paolo Xausa, Nov 10 2024

Keywords

Examples

			2.0970538352520879924039590523482862400308397305810...
		

Crossrefs

Cf. A377804 (surface area), A377805 (volume), A377806 (circumradius).
Cf. A239798 (analogous for a regular dodecahedron).
Cf. A377849.

Programs

  • Mathematica
    First[RealDigits[Sqrt[1/(1 - Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1])]/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "Midradius"], 10, 100]]

Formula

Equals sqrt(1/(1 - A377849))/2.
Equals the real root closest to 2 of 4096*x^12 - 21504*x^10 + 16384*x^8 - 4672*x^6 + 624*x^4 - 40*x^2 + 1.

A377806 Decimal expansion of the circumradius of a snub dodecahedron with unit edge length.

Original entry on oeis.org

2, 1, 5, 5, 8, 3, 7, 3, 7, 5, 1, 1, 5, 6, 3, 9, 7, 0, 1, 8, 3, 6, 6, 2, 9, 0, 7, 6, 6, 9, 3, 0, 5, 8, 2, 7, 7, 0, 1, 6, 8, 5, 1, 2, 1, 8, 7, 7, 4, 8, 1, 1, 8, 2, 2, 4, 1, 2, 2, 1, 5, 4, 3, 0, 1, 2, 0, 0, 6, 7, 0, 8, 0, 9, 4, 9, 4, 8, 4, 0, 0, 0, 5, 3, 4, 2, 9, 9, 2, 6
Offset: 1

Views

Author

Paolo Xausa, Nov 10 2024

Keywords

Examples

			2.1558373751156397018366290766930582770168512187748...
		

Crossrefs

Cf. A377804 (surface area), A377805 (volume), A377807 (midradius).
Cf. A179296 (analogous for a regular dodecahedron).
Cf. A377849.

Programs

  • Mathematica
    First[RealDigits[Sqrt[1 + 1/(1 - Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1])]/2, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["SnubDodecahedron", "Circumradius"], 10, 100]]

Formula

Equals sqrt(1 + 1/(1 - A377849))/2.
Equals the real root closest to 2 of 4096*x^12 - 27648*x^10 + 47104*x^8 - 35776*x^6 + 13872*x^4 -2696*x^2 + 209.

A377997 Decimal expansion of the dihedral angle, in radians, between triangular faces in a snub dodecahedron.

Original entry on oeis.org

2, 8, 6, 5, 4, 0, 0, 6, 8, 8, 3, 4, 4, 7, 2, 8, 6, 0, 7, 6, 0, 4, 6, 0, 7, 3, 4, 1, 7, 3, 3, 6, 5, 6, 9, 1, 4, 1, 1, 9, 0, 0, 9, 6, 7, 2, 6, 6, 5, 2, 3, 7, 9, 6, 9, 0, 5, 9, 9, 2, 8, 5, 2, 5, 2, 2, 0, 3, 5, 8, 6, 9, 8, 3, 4, 3, 4, 2, 9, 0, 1, 8, 5, 7, 2, 8, 8, 7, 8, 0
Offset: 1

Views

Author

Paolo Xausa, Nov 15 2024

Keywords

Examples

			2.8654006883447286076046073417336569141190096726652...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi - ArcCos[2*Root[#^3 + 2*#^2 - GoldenRatio^2 &, 1]/3 + 1/3], 10, 100]] (* or *)
    First[RealDigits[Max[PolyhedronData["SnubDodecahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals Pi - arccos((2/3)*A377849 + 1/3).
Equals Pi - arccos(c), where c is the largest real root of 729*x^6 + 486*x^5 - 729*x^4 - 756*x^3 + 63*x^2 + 270*x + 1.

A377998 Decimal expansion of the dihedral angle, in radians, between triangular and pentagonal faces in a snub dodecahedron.

Original entry on oeis.org

2, 6, 6, 9, 1, 3, 0, 6, 3, 3, 6, 2, 5, 7, 5, 6, 1, 0, 7, 7, 0, 7, 9, 4, 0, 9, 3, 5, 7, 1, 8, 2, 0, 8, 2, 3, 0, 5, 1, 8, 7, 0, 3, 7, 4, 5, 3, 5, 5, 3, 8, 0, 2, 7, 4, 2, 2, 3, 5, 0, 2, 7, 2, 6, 0, 4, 0, 0, 7, 4, 7, 2, 9, 1, 9, 0, 6, 4, 8, 3, 7, 6, 8, 8, 9, 1, 6, 5, 0, 7
Offset: 1

Views

Author

Paolo Xausa, Nov 15 2024

Keywords

Examples

			2.669130633625756107707940935718208230518703745355...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi - ArcCos[Root[91125*#^12 - 668250*#^10 + 2006775*#^8 - 2735100*#^6 + 1768275*#^4 - 502410*#^2 + 43681&, 7]], 10, 100]] (* or *)
    First[RealDigits[Min[PolyhedronData["SnubDodecahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals Pi - arccos(sqrt((12*phi - (4*phi + 8)*xi*(xi + 1) + 19)/15)), where phi = A001622 and xi = A377849.
Equals Pi - arccos(c), where c is the real root closest to 9/10 of 91125*x^12 - 668250*x^10 + 2006775*x^8 - 2735100*x^6 + 1768275*x^4 - 502410*x^2 + 43681.

A381696 Decimal expansion of the isoperimetric quotient of a snub dodecahedron.

Original entry on oeis.org

9, 4, 6, 9, 9, 9, 0, 4, 5, 2, 3, 4, 2, 1, 5, 6, 2, 6, 1, 8, 4, 5, 4, 4, 1, 2, 8, 7, 7, 0, 8, 7, 4, 7, 0, 5, 5, 0, 4, 7, 9, 6, 7, 3, 8, 1, 5, 0, 7, 7, 1, 6, 3, 8, 3, 5, 7, 3, 9, 9, 0, 8, 0, 4, 9, 2, 1, 2, 0, 9, 9, 5, 2, 0, 7, 6, 4, 6, 2, 0, 0, 3, 0, 2, 3, 8, 0, 6, 5, 5
Offset: 0

Views

Author

Paolo Xausa, Mar 10 2025

Keywords

Comments

For the definition of isoperimetric quotient of a solid, references and links, see A381684.
The snub dodecahedron is the Archimedean solid with the highest isoperimetric quotient.

Examples

			0.94699904523421562618454412877087470550479673815077...
		

Crossrefs

Cf. A377804 (surface area), A377805 (volume).

Programs

  • Mathematica
    First[RealDigits[Pi/(20*Sqrt[3] + 3*Sqrt[25 + Sqrt[500]])^3*Root[#^6 - 52845*#^5 + 96583500*#^4 + 22087761875*#^3 + 4747626384375*#^2 - 5059009765293750*# + 187445810737515625 &, 4], 10, 100]]

Formula

Equals 36*Pi*A377805^2/(A377804^3).
Equals Pi/((20*sqrt(3) + 3*sqrt(25 + 10*sqrt(5)))^3)*r = A000796/((20*A002194 + 3*sqrt(25 + 10*A002163))^3)*r, where r is the largest real root of x^6 - 52845*x^5 + 96583500*x^4 + 22087761875*x^3 + 4747626384375*x^2 - 5059009765293750*x + 187445810737515625.
Showing 1-7 of 7 results.