cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A377883 Cogrowth sequence of the 16-element modular group M4(2) = .

Original entry on oeis.org

1, 1, 1, 7, 34, 126, 496, 2052, 8264, 32776, 130816, 524272, 2098144, 8388576, 33550336, 134217792, 536887424, 2147483776, 8589869056, 34359738112, 137439215104, 549755813376, 2199022206976, 8796093023232, 35184376285184, 140737488357376, 562949936644096
Offset: 0

Views

Author

Sean A. Irvine, Nov 10 2024

Keywords

Comments

Gives the even terms, all the odd terms are 0.
Also called M16, C4.C4. Gap identifier 16,6.

Crossrefs

Cf. A007582 (D8), A377840 (C8 X C2), A377855 (C4:C4), A377885 (SD16).

Formula

G.f.: (4*x^5-14*x^4+17*x^3-9*x^2+5*x-1) / ((4*x-1) * (4*x^2+1) * (2*x^2-2*x+1)).

A377943 Cogrowth sequence of the 16-element Pauli group C4 o D4 = .

Original entry on oeis.org

1, 1, 11, 91, 821, 7381, 66431, 597871, 5380841, 48427561, 435848051, 3922632451, 35303692061, 317733228541, 2859599056871, 25736391511831, 231627523606481, 2084647712458321, 18761829412124891, 168856464709124011, 1519708182382116101, 13677373641439044901
Offset: 0

Views

Author

Sean A. Irvine, Nov 11 2024

Keywords

Comments

Gives the even terms, all the odd terms are 0.

Crossrefs

Cf. A070775 (C4 X C4), A377855 (C4:C4), A047854 (D4 X C2).

Formula

G.f.: (x^2-8*x+1) / ((x-1) * (9*x-1) * (x+1)).

A377946 Cogrowth sequence of the 16-element group C2^2:C4 = .

Original entry on oeis.org

1, 1, 2, 10, 40, 136, 512, 2080, 8320, 32896, 131072, 524800, 2099200, 8390656, 33554432, 134225920, 536903680, 2147516416, 8589934592, 34359869440, 137439477760, 549756338176, 2199023255552, 8796095119360, 35184380477440, 140737496743936, 562949953421312
Offset: 0

Views

Author

Sean A. Irvine, Nov 11 2024

Keywords

Comments

Gives the even terms, all the odd terms are 0.
Also called K8:C2. Gap identifier 16, 3.

Crossrefs

Cf. A377855 (C4:C4), A054879 (C2^3), A377843 (C4 X C2^2), A377943 (C4 o D4).

Formula

G.f.: (12*x^4-14*x^3+8*x^2-5*x+1) / ((4*x-1) * (2*x-1) * (4*x^2+1)).
Showing 1-3 of 3 results.