cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377871 Numbers k such that neither k nor A276085(k) has divisors of the form p^p, where A276085 is fully additive with a(p) = p#/p.

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 13, 14, 17, 18, 19, 22, 23, 26, 29, 30, 31, 34, 37, 38, 41, 42, 43, 45, 46, 47, 50, 53, 58, 59, 61, 62, 63, 66, 67, 70, 71, 73, 74, 75, 78, 79, 82, 83, 86, 89, 90, 94, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 113, 114, 117, 118, 122, 125, 126, 127, 130, 131, 134, 137, 138, 139, 142
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2024

Keywords

Comments

Range of A276087, where A276087(n) = A276086(A276086(n)) [the twofold application of the primorial base exp-function].
A276087(0) = 2, and for n >= 0, A276087(A143293(n)) = A000040(n+2), therefore all primes are included.
From Antti Karttunen, Nov 17 2024: (Start)
Even semiprimes > 4 form a subsequence, because A006862 (Euclid numbers) is a subsequence of A048103. Note that A276087(A376416(n)) = A276086(A006862(n)) = A100484(1+n). On the other hand, none of the odd semiprimes, A046315, occur here, because they are all included in A369002, and thus in A377873. Similarly, A276092 after its initial 1 is a subsequence, because A057588 (Kummer numbers) is also a subsequence of A048103.
For k=1..6, there are 6, 52, 486, 4775, 46982, 467372 terms <= 10^k. Question: Does this sequence have an asymptotic density?
(End)

Examples

			A276087(A002110(10)) = A276086(A276086(A002110(10))) = A276086(A000040(10+1)) = A276086(31) = 14, therefore 14 is included in this sequence.
		

Crossrefs

Intersection of A048103 and A377869.
Sequence A276087 sorted into ascending order.
Cf. A377870 (characteristic function).
Subsequences: A000040, A100484 (after its initial 4), A276092 (after its initial 1).

Programs