cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377872 Numbers k for which A276085(k) is a multiple of 27, where A276085 is fully additive with a(p) = p#/p.

Original entry on oeis.org

1, 55, 95, 115, 155, 174, 187, 203, 232, 265, 282, 297, 323, 325, 329, 335, 376, 391, 396, 438, 462, 474, 511, 513, 515, 527, 528, 539, 553, 584, 606, 616, 621, 632, 649, 654, 678, 684, 704, 707, 745, 763, 791, 798, 808, 828, 837, 872, 901, 904, 906, 912, 913, 931, 966, 978, 1002, 1057, 1064, 1073, 1074, 1075, 1104, 1105
Offset: 1

Views

Author

Antti Karttunen, Nov 10 2024

Keywords

Comments

A multiplicative semigroup; if m and n are in the sequence then so is m*n.
From Antti Karttunen, Nov 17 2024: (Start)
Question: What is the asymptotic density of this sequence? There are 1, 3, 56, 484, 4899, 50034, 508254 terms <= 10^k, for k=1..7. See also questions in A377869 and in A377878.
If 3*x is a term, then 4*x is also a term, and vice versa.
Contains no even semiprimes (A100484), semiprimes of the form 3*prime (A001748), nor terms of the form 4*prime (A001749).
(End)

Crossrefs

Subsequence of A339746, and of A377873.
Cf. also A369007, A377875.

Programs

  • PARI
    isA377872(n) = { my(m=27, f = factor(n), pr=1, i=1, s=0); for(k=1, #f~, while(i <= primepi(f[k, 1])-1, pr *= Mod(prime(i),m); i++); s += f[k, 2]*pr); (0==lift(s)); };

Formula

{k such that Sum e*A377876(A000720(p)-1) == 0 (mod 27), when k = Product(p^e)}.