cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377786 Numbers k such that 5^sigma(k) - k is a prime.

Original entry on oeis.org

4, 524, 7206, 11156
Offset: 1

Views

Author

J.W.L. (Jan) Eerland, Nov 11 2024

Keywords

Examples

			4 is in the sequence because 5^sigma(4) - 4 = 5^7 - 4 = 78121 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in[1..10000] | IsPrime((5^SumOfDivisors(n)) - n)];
  • Mathematica
    a[n_] := Select[Range@ n, PrimeQ[5^DivisorSigma[1, #] - #] &]; a[20000]
    DeleteCases[ParallelTable[If[PrimeQ[5^DivisorSigma[1,k]-k],k,n],{k,1,10^4}],n]

Extensions

a(4) from Michael S. Branicky, Nov 11 2024

A378512 Numbers k such that 6^sigma(k) - k is a prime.

Original entry on oeis.org

1, 7, 13, 77, 395, 2867, 3959, 5023
Offset: 1

Views

Author

J.W.L. (Jan) Eerland, Nov 29 2024

Keywords

Comments

a(9) > 10^5. - Michael S. Branicky, Dec 01 2024

Examples

			7 is in the sequence because 6^sigma(7) - 7 = 6^8 - 7 = 1679609 is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in[1..10000] | IsPrime((6^SumOfDivisors(n)) - n)];
    
  • Mathematica
    a[n_] := Select[Range@ n, PrimeQ[6^DivisorSigma[1, #] - #] &]; a[20000]
    DeleteCases[ParallelTable[If[PrimeQ[6^DivisorSigma[1,k]-k],k,n],{k,1,10^4}],n]
  • PARI
    isok(k) = ispseudoprime(6^sigma(k) - k); \\ Michel Marcus, Dec 09 2024
Showing 1-2 of 2 results.