cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377934 a(n) is the number of perfect powers m^k with k>=3 (A076467) <= 10^n.

Original entry on oeis.org

1, 2, 7, 17, 38, 75, 152, 306, 616, 1260, 2598, 5401, 11307, 23798, 50316, 106776, 227236, 484737, 1036002, 2217529, 4752349, 10194727, 21887147, 47020054, 101065880, 217325603, 467484989, 1005881993, 2164843035, 4660016778, 10032642455, 21602193212, 46518438071
Offset: 0

Views

Author

Hugo Pfoertner, Nov 24 2024

Keywords

Examples

			a(0) = 1: 1^k with any k>2 (<= 10^0);
a(1) = 2: 1 and 2^3 (<=10^1);
a(2) = 7: 2 powers <= 10 and 16, 27, 32, 64, 81 (<=10^2).
		

Crossrefs

Programs

  • Python
    from math import gcd
    from sympy import integer_nthroot, mobius
    def A377934(n): return int(integer_nthroot(10**(n//(a:=gcd(n,4))),4//a)[0]-sum(mobius(k)*(integer_nthroot(10**(n//(b:=gcd(n,k))),k//b)[0]+integer_nthroot(10**(n//(c:=gcd(n,d:=k<<1))),d//c)[0]-2) for k in range(3,(10**n).bit_length()))) # Chai Wah Wu, Nov 24 2024

Formula

a(n) = 10^n - Sum_{k=1..floor(log2(10^n))} mu(k)*(floor(10^(n/k))+floor(10^(n/(2k)))-2). - Chai Wah Wu, Nov 24 2024

Extensions

a(28) onwards from Chai Wah Wu, Nov 24 2024