A377973 Expansion of the 96th root of the series 2*E_2(x) - E_2(x)^2, where E_2 is the Eisenstein series of weight 2.
1, 0, -6, -36, -1812, -20748, -773340, -12237456, -386587650, -7368446268, -211914644940, -4517757977820, -123221458979940, -2814502962357420, -74551748141034552, -1778129476480366320, -46377354051910716180, -1137191336376638407704, -29438532048777299115090, -735051729258136807204140
Offset: 0
Links
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
Crossrefs
Programs
-
Maple
with(numtheory): E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end: seq(coeftayl((2*E(2) - E(2)^2)^(1/96), q = 0, n),n = 0..20);
-
Mathematica
terms = 20; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(2*E2[x] - E2[x]^2)^(1/96), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)
Formula
a(n) ~ c / (r^n * n^(97/96)), where r = A211342 = 0.03727681029645165815098... and c = -0.0104397599261506010365791466642760245638473040812140699981294533624... - Vaclav Kotesovec, Aug 03 2025
Comments