cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377974 Expansion of the 1920th root of the series 2*E_4(x) - E_8(x), where E_4 and E_8 are the Eisenstein series of weight 4 and weight 8.

Original entry on oeis.org

1, 0, -30, -540, -867660, -31107300, -33668157900, -1795572812400, -1477793386682970, -103845834995498100, -69550699526934273180, -6017200267937951322660, -3426636160378174348594500, -349303370036461528632524580, -174458882971934188146144343320, -20314204536496741742949242177040
Offset: 0

Views

Author

Peter Bala, Nov 13 2024

Keywords

Comments

Let R = 1 + x*Z[[x]] denote the set of integer power series with constant term equal to 1. Let P(n) = {g^n, g in R}. The Eisenstein series E_4(x) lies in P(8) (Heninger et al.). Since E_8(x) = E_4(x)^2, it follows that E_8(x) lies in P(16).
We claim that the series 2*E_4(x) - E_8(x) belongs to P(1920).
Proof.
E_4(x) = 1 + 240*Sum_{n >= 1} sigma_3(n)*x^n. Hence,
2*E_4(x) - E_8(x) = 2*E_4(x) - E_4(x)^2 = 1 - 240^2*( Sum_{n >= 1} sigma_3(n) )^2 is in the set R.
Hence, 2*E_4(x) - E_8(x) == 1 mod(240^2) == 1 (mod (2^8)*(3^2)*(5^2)).
It follows from Heninger et al., Theorem 1, Corollary 2, that the series 2*E_4(x) - E_8(x) belongs to P((2^7)*3*5) = P(1920). End Proof.

Crossrefs

Cf. A004009 (E_4), A008410 (E_8), A108091 (eighth root of E_4), A341871 - A341875, A377973, A377975, A377976, A377977.

Programs

  • Maple
    with(numtheory):
    E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
    seq(coeftayl((2*E(4) - E(8))^(1/1920), q = 0, n),n = 0..20);
  • Mathematica
    terms = 20; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E8[x_] = 1 + 480*Sum[k^7*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(2*E4[x] - E8[x])^(1/1920), {x, 0, terms}], x] (* Vaclav Kotesovec, Aug 03 2025 *)

Formula

a(n) ~ c / (r^n * n^(1921/1920)), where r = 0.004019427095115250686492968205049012182922598389629390919504184161606551652... is the root of the equation Sum_{k>=1} sigma_3(k) * r^k = 1/240 and c = -0.00052087420429807426289253718287... - Vaclav Kotesovec, Aug 03 2025