A377979 List of exponents in the expansion of (1 - q)*Sum_{n >= 0} q^(2*n*(n+1))*Product_{k >= 2*n+1} 1 - q^k.
0, 1, 3, 4, 6, 8, 11, 13, 18, 20, 26, 29, 35, 39, 46, 50, 59, 63, 73, 78, 88, 94, 105, 111, 124, 130, 144, 151, 165, 173, 188, 196, 213, 221, 239, 248, 266, 276, 295, 305, 326, 336, 358, 369, 391, 403, 426, 438, 463, 475, 501, 514, 540, 554, 581, 595, 624, 638, 668, 683, 713, 729, 760, 776, 809, 825
Offset: 1
Examples
(1 - q)*Sum_{n >= 0} q^(2*n*(n+1))*Product_{k >= 2*n+1} 1 - q^k = 1 - 2*q + q^3 + q^4 - q^6 - q^8 + q^11 + q^13 - q^18 - q^20 + q^26 + q^29 - q^35 - q^39 + q^46 + q^50 - q^59 - q^63 + + - - ....
Programs
-
Maple
series(add((1 - q)*q^(2*n*(n+1))*mul(1 - q^k, k = 2*n+1..1000), n = 0..21), q, 1001);
Formula
The following are conjectural:
a(n) is quasi-polynomial in n:
a(8*n+1) = 12*n^2 + 5*n + 1 = A244806(n+1) for n >= 1;
a(8*n+2) = 12*n^2 + 7*n + 1 = A033577(n); a(8*n+3) = 12*n^2 + 11*n + 3;
a(8*n+4) = 12*n^2 + 13*n + 4; a(8*n+5) = 12*n^2 + 17*n + 6 = A033578(n+1);
a(8*n+6) = 12*n^2 + 19*n + 8; a(8*n+7) = 12*n^2 + 23*n + 11;
a(8*n+8) = 12*n^2 + 25*n + 13.
G.f.: x^2*(x^8 - x^7 - 2*x^6 + 3*x^5 + 2*x^4 - 2*x^3 - x^2 + 2*x + 1)/((1 + x)^2*(1 - x)^3*(1 + x^4)) = x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 8*x^6 + 11*x^7 + ....
Comments