cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377979 List of exponents in the expansion of (1 - q)*Sum_{n >= 0} q^(2*n*(n+1))*Product_{k >= 2*n+1} 1 - q^k.

Original entry on oeis.org

0, 1, 3, 4, 6, 8, 11, 13, 18, 20, 26, 29, 35, 39, 46, 50, 59, 63, 73, 78, 88, 94, 105, 111, 124, 130, 144, 151, 165, 173, 188, 196, 213, 221, 239, 248, 266, 276, 295, 305, 326, 336, 358, 369, 391, 403, 426, 438, 463, 475, 501, 514, 540, 554, 581, 595, 624, 638, 668, 683, 713, 729, 760, 776, 809, 825
Offset: 1

Views

Author

Peter Bala, Dec 16 2024

Keywords

Comments

Compare with the expansions Sum_{n >= 0} q^(2*n*(n+1))*Product_{k >= 2*n+2} 1 - q^k = 1 - q^2 - q^3 + q^7 + q^17 - q^25 - q^28 + + - - ... (see A268539) and Sum_{n >= 0} q^(n*(n+1))*Product_{k >= 2*n+1} 1 - q^k = 1 - q - q^8 + q^13 + q^17 - q^24 - q^45 + + - - .... (see A204221).
Conjectures:
1) apart from the coefficient of q, the coefficients of the series expansion (see below) belong to {-1, 0, 1}.
2) starting at q^3, the signs of the nonzero coefficients follow the pattern + + - - + + - - ....
It appears that the sequence terms are the exponents in the expansion of Sum_{n >= 0} x^(3*n)/(Product_{k = 1..2*n} 1 + x^k) = 1 + x^3 - x^4 + x^6 - x^8 + x^11 - x^13 + - .... - Peter Bala, Jan 21 2025

Examples

			(1 - q)*Sum_{n >= 0} q^(2*n*(n+1))*Product_{k >= 2*n+1} 1 - q^k = 1 - 2*q + q^3 + q^4 - q^6 - q^8 + q^11 + q^13 - q^18 - q^20 + q^26 + q^29 - q^35 - q^39 + q^46 + q^50 - q^59 - q^63 + + - - ....
		

Crossrefs

Programs

  • Maple
    series(add((1 - q)*q^(2*n*(n+1))*mul(1 - q^k, k = 2*n+1..1000), n = 0..21), q, 1001);

Formula

The following are conjectural:
a(n) is quasi-polynomial in n:
a(8*n+1) = 12*n^2 + 5*n + 1 = A244806(n+1) for n >= 1;
a(8*n+2) = 12*n^2 + 7*n + 1 = A033577(n); a(8*n+3) = 12*n^2 + 11*n + 3;
a(8*n+4) = 12*n^2 + 13*n + 4; a(8*n+5) = 12*n^2 + 17*n + 6 = A033578(n+1);
a(8*n+6) = 12*n^2 + 19*n + 8; a(8*n+7) = 12*n^2 + 23*n + 11;
a(8*n+8) = 12*n^2 + 25*n + 13.
G.f.: x^2*(x^8 - x^7 - 2*x^6 + 3*x^5 + 2*x^4 - 2*x^3 - x^2 + 2*x + 1)/((1 + x)^2*(1 - x)^3*(1 + x^4)) = x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 8*x^6 + 11*x^7 + ....