A378006 Square table read by descending antidiagonals: the k-th column has Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo k.
1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Table starts 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 0, 2, 0, 0, 0, 0, 0, 0, ... 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... 1, 1, 2, 0, 0, 2, 0, 0, 0, 0, ... 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, ... 1, 1, 0, 1, 0, 0, 0, 2, 0, 0, ... 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... See A378007 for more details.
Links
- Jianing Song, Table of n, a(n) for n = 1..11325 (the first 150 diagonals, with n+k = 2..151)
- J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973.
Programs
-
PARI
A378006(n,k) = { my(f = factor(n), res = 1); for(i=1, #f~, if(k % f[i,1] == 0, return(0)); my(d = znorder(Mod(f[i,1],k))); if(f[i,2] % d != 0, return(0), my(m = f[i,2]/d, r = eulerphi(k)/d); res *= binomial(m+r-1,r-1))); res;}
Formula
Each column is multiplicative: T(p^e,k) = 0 if p divides k; 0 if e is not divisible by ord(p,k); binomial(e/ord(p,k)+phi(k)/ord(p,k)-1,phi(k)/ord(p,k)-1) otherwise.
For odd k, T(2*k,n) = T(k,n) for odd n, 0 for even n.
Comments