cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378007 Square table read by descending antidiagonals: T(n,k) = A378006(k*n+1,k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 0, 1, 0, 1, 1, 1, 2, 4, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 0, 2, 0, 0, 2, 1, 1, 1, 0, 4, 0, 1, 0, 3, 0, 1, 1, 1, 4, 6, 2, 6, 2, 4, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 1, 4, 10, 4, 6, 4, 6, 2, 4, 2, 2, 1, 1
Offset: 0

Views

Author

Jianing Song, Nov 14 2024

Keywords

Comments

A condensed version of A378006: the k-th column is the sequence {b(k*n+1)}, with the sequence {b(n)} having Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo k.

Examples

			Table starts
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
  1, 1, 1, 2, 0, 2, 2, 2, 0, 4, ...
  1, 1, 2, 1, 4, 2, 0, 4, 6, 0, ...
  1, 1, 0, 2, 1, 2, 0, 2, 0, 4, ...
  1, 1, 2, 2, 0, 1, 6, 0, 6, 4, ...
  1, 1, 1, 0, 0, 2, 0, 4, 0, 0, ...
  1, 1, 2, 3, 4, 2, 6, 2, 0, 4, ...
  1, 1, 0, 2, 0, 2, 0, 0, 1, 4, ...
  1, 1, 1, 0, 4, 3, 0, 0, 6, 1, ...
  1, 1, 2, 2, 0, 0, 3, 4, 0, 0, ...
  1, 1, 2, 2, 0, 2, 6, 3, 0, 4, ...
Write w = exp(2*Pi*i/3) = (-1 + sqrt(3)*i)/2.
Column k = 1: 1 + 1/2^s + 1/3^s + 1/4^s + 1/5^s + 1/6^s + 1/7^s + 1/8^s + 1/9^s + 1/10^s + 1/11^s + ...;
Column k = 2: 1 + 1/3^s + 1/5^s + 1/7^s + 1/9^s + 1/11^s + 1/13^s + 1/15^s + 1/17^s + 1/19^s + 1/21^s + ...;
Column k = 3: (1 + 1/2^s + 1/4^s + 1/5^s + ...)*(1 - 1/2^s + 1/4^s - 1/5^s + ...) = 1 + 1/4^s + 2/7^s + 2/13^s + 1/16^s + 2/19^s + 1/25^s + 2/28^s + 2/31^s + ...;
Column k = 4: (1 + 1/3^s + 1/5^s + 1/7^s + ...)*(1 - 1/3^s + 1/5^s - 1/7^s + ...) = 1 + 2/5^s + 1/9^s + 2/13^s + 2/17^s + 3/25^s + 2/29^s + 2/37^s + 2/41^s + ...;
Column k = 5: (1 + 1/2^s + 1/3^s + 1/4^s + ...)*(1 + i/2^s - i/3^s - 1/4^s + ...)*(1 - 1/2^s - 1/3^s + 1/4^s + ...)*(1 - i/2^s + i/3^s - 1/4^s + ...) = 1 + 4/11^s + 1/16^s + 4/31^s + 4/41^s + ...;
Column k = 6: (1 + 1/5^s + 1/7^s + 1/11^s + ...)*(1 - 1/5^s + 1/7^s - 1/11^s + ...) = 1 + 2/7^s + 2/13^s + 2/19^s + 1/25^s + 1/31^s + 2/37^s + 2/43^s + 3/49^s + 2/61^s + ...;
Column k = 7: (1 + 1/2^s + 1/3^s + 1/4^s + 1/5^s + 1/6^s + ...)*(1 + w/2^s + (w+1)/3^s - (w+1)/4^s - w/5^s - 1/6^s + ...)*(1 - (w+1)/2^s + w/3^s + w/4^s - (w+1)/5^s + 1/6^s + ...)*(1 + 1/2^s - 1/3^s + 1/4^s - 1/5^s - 1/6^s + ...)*(1 + w/2^s - (w+1)/3^s - (w+1)/4^s + w/5^s + 1/6^s + ...)*(1 - (w+1)/2^s - w/3^s + w/4^s + (w+1)/5^s - 1/6^s + ...) = 1 + 2/8^s + 6/29^s + 6/43^s + 3/64^s + 6/71^s + ...;
Column k = 8: (1 + 1/3^s + 1/5^s + 1/7^s + ...)*(1 + 1/3^s - 1/5^s - 1/7^s + ...)*(1 - 1/3^s + 1/5^s - 1/7^s + ...)*(1 - 1/3^s - 1/5^s + 1/7^s + ...) = 1 + 2/9^s + 4/17^s + 2/25^s + 4/41^s + 2/49^s + 4/73^s + 3/81^s + ...;
Column k = 9: (1 + 1/2^s + 1/4^s + 1/5^s + 1/7^s + 1/8^s + ...)*(1 + (w+1)/2^s + w/4^s - w/5^s - (w+1)/7^s - 1/8^s + ...)*(1 + w/2^s - (w+1)/4^s - (w+1)/5^s + w/7^s + 1/8^s + ...)*(1 - 1/2^s + 1/4^s - 1/5^s + 1/7^s - 1/8^s + ...)*(1 - (w+1)/2^s + w/4^s + w/5^s - (w+1)/7^s + 1/8^s + ...)*(1 - w/2^s - (w+1)/4^s + (w+1)/5^s + w/7^s - 1/8^s + ...) = 1 + 6/19^s + 6/37^s + 1/64^s + 6/73^s + ...;
Column k = 10: (1 + 1/3^s + 1/7^s + 1/9^s + ...)*(1 + i/3^s - i/7^s - 1/9^s + ...)*(1 - 1/3^s - 1/7^s + 1/9^s + ...)*(1 - i/3^s + i/7^s - 1/9^s + ...) = 1 + 4/11^s + 4/31^s + 4/41^s + 4/61^s + 4/71^s + 1/81^s + 4/101^s + ...
		

Crossrefs

Columns: A000012 (k=1 and k=2), A033687 (k=3), A008441 (k=4), A378008 (k=5), A097195 (k=6), A378009 (k=7), A378010 (k=8), A378011 (k=9), A378012 (k=10).
Cf. A378006.

Programs

  • PARI
    A378007(n,k) = {
    my(f = factor(k*n+1), res = 1); for(i=1, #f~, my(d = znorder(Mod(f[i,1],k)));
    if(f[i,2] % d != 0, return(0), my(m = f[i,2]/d, r = eulerphi(k)/d); res *= binomial(m+r-1,r-1)));
    res;}

Formula

See A378006.
For odd k, T(2*k,n) = T(k,2*n).