A378008
a(n) = b(5*n+1), with the sequence {b(n)} having Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo 5; 5th column of A378007.
Original entry on oeis.org
1, 0, 4, 1, 0, 0, 4, 0, 4, 0, 0, 0, 4, 0, 4, 0, 1, 0, 0, 0, 4, 0, 0, 0, 10, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 4, 4, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 4, 1, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 16, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 0, 0, 0, 16
Offset: 0
(1 + 1/2^s + 1/3^s + 1/4^s + ...)*(1 + i/2^s - i/3^s - 1/4^s + ...)*(1 - 1/2^s - 1/3^s + 1/4^s + ...)*(1 - i/2^s + i/3^s - 1/4^s + ...) = 1 + 4/11^s + 1/16^s + 4/31^s + 4/41^s + ...
-
A378008(n) = {
my(f = factor(5*n+1), res = 1); for(i=1, #f~,
if(f[i,1] % 5 == 1, res *= binomial(f[i,2]+3, 3));
if(f[i,1] % 5 == 4, if(f[i,2] % 2 == 0, res *= f[i,2]/2+1, return(0)));
if(f[i,1] % 5 == 2 || f[i,1] % 5 == 3, if(f[i,2] % 4 != 0, return(0))));
res; }
A378009
a(n) = b(7*n+1), with the sequence {b(n)} having Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo 7; 7th column of A378007.
Original entry on oeis.org
1, 2, 0, 0, 6, 0, 6, 0, 0, 3, 6, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 3, 0, 0, 0, 6, 0, 6, 0, 0, 12, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 12, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 6, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 6, 0, 0, 12, 0, 0, 0, 0, 0, 0, 6, 0, 6
Offset: 0
Write w = exp(2*Pi*i/3) = (-1 + sqrt(3)*i)/2, then (1 + 1/2^s + 1/3^s + 1/4^s + 1/5^s + 1/6^s + ...)*(1 + w/2^s + (w+1)/3^s - (w+1)/4^s - w/5^s - 1/6^s + ...)*(1 - (w+1)/2^s + w/3^s + w/4^s - (w+1)/5^s + 1/6^s + ...)*(1 + 1/2^s - 1/3^s + 1/4^s - 1/5^s - 1/6^s + ...)*(1 + w/2^s - (w+1)/3^s - (w+1)/4^s + w/5^s + 1/6^s + ...)*(1 - (w+1)/2^s - w/3^s + w/4^s + (w+1)/5^s - 1/6^s + ...) = 1 + 2/8^s + 6/29^s + 6/43^s + 3/64^s + 6/71^s + ...
-
A378009(n) = {
my(f = factor(7*n+1), res = 1); for(i=1, #f~,
if(f[i,1] % 7 == 1, res *= binomial(f[i,2]+5, 5));
if(f[i,1] % 7 == 6, if(f[i,2] % 2 == 0, res *= binomial(f[i,2]/2+2, 2), return(0)));
if(f[i,1] % 7 == 2 || f[i,1] % 7 == 4, if(f[i,2] % 3 == 0, res *= f[i,2]/3+1, return(0)));
if(f[i,1] % 7 == 3 || f[i,1] % 7 == 5, if(f[i,2] % 6 != 0, return(0))));
res; }
A378010
a(n) = b(8*n+1), with the sequence {b(n)} having Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo 8; 8th column of A378007.
Original entry on oeis.org
1, 2, 4, 2, 0, 4, 2, 0, 0, 4, 3, 4, 4, 0, 4, 2, 0, 4, 0, 8, 0, 2, 0, 0, 4, 0, 0, 0, 4, 4, 4, 0, 4, 0, 0, 4, 10, 0, 0, 4, 0, 0, 4, 0, 4, 2, 8, 0, 0, 0, 4, 4, 0, 8, 4, 4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 4, 4, 0, 4, 4, 0, 4, 3, 0, 4, 0, 8, 0, 4, 0, 0, 16, 0, 0, 0
Offset: 0
(1 + 1/3^s + 1/5^s + 1/7^s + ...)*(1 + 1/3^s - 1/5^s - 1/7^s + ...)*(1 - 1/3^s + 1/5^s - 1/7^s + ...)*(1 - 1/3^s - 1/5^s + 1/7^s + ...) = 1 + 2/9^s + 4/17^s + 2/25^s + 4/41^s + 2/49^s + 4/73^s + 3/81^s + ...
-
A378010(n) = {
my(f = factor(8*n+1), res = 1); for(i=1, #f~,
if(f[i,1] % 8 == 1, res *= binomial(f[i,2]+3, 3));
if(f[i,1] % 8 == 3 || f[i,1] % 8 == 5 || f[i,1] % 8 == 7, if(f[i,2] % 2 == 0, res *= f[i,2]/2+1, return(0))));
res; }
A378011
a(n) = b(9*n+1), with the sequence {b(n)} having Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo 9; 9th column of A378007.
Original entry on oeis.org
1, 0, 6, 0, 6, 0, 0, 1, 6, 0, 0, 0, 6, 0, 6, 0, 0, 0, 6, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 6, 0, 3, 0, 6, 0, 0, 0, 2, 0, 21, 0, 6, 0, 6, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 6, 0, 6, 0, 0, 0, 6, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 6, 0, 6, 0, 0, 0, 0, 0, 6
Offset: 0
Write w = exp(2*Pi*i/3) = (-1 + sqrt(3)*i)/2, then (1 + 1/2^s + 1/4^s + 1/5^s + 1/7^s + 1/8^s + ...)*(1 + (w+1)/2^s + w/4^s - w/5^s - (w+1)/7^s - 1/8^s + ...)*(1 + w/2^s - (w+1)/4^s - (w+1)/5^s + w/7^s + 1/8^s + ...)*(1 - 1/2^s + 1/4^s - 1/5^s + 1/7^s - 1/8^s + ...)*(1 - (w+1)/2^s + w/4^s + w/5^s - (w+1)/7^s + 1/8^s + ...)*(1 - w/2^s - (w+1)/4^s + (w+1)/5^s + w/7^s - 1/8^s + ...) = 1 + 6/19^s + 6/37^s + 1/64^s + 6/73^s + ...
-
A378011(n) = {
my(f = factor(9*n+1), res = 1); for(i=1, #f~,
if(f[i,1] % 9 == 1, res *= binomial(f[i,2]+5, 5));
if(f[i,1] % 9 == 8, if(f[i,2] % 2 == 0, res *= binomial(f[i,2]/2+2, 2), return(0)));
if(f[i,1] % 9 == 4 || f[i,1] % 9 == 7, if(f[i,2] % 3 == 0, res *= f[i,2]/3+1, return(0)));
if(f[i,1] % 9 == 2 || f[i,1] % 9 == 5, if(f[i,2] % 6 != 0, return(0))));
res; }
A378012
a(n) = b(10*n+1), with the sequence {b(n)} having Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo 10; 10th column of A378007.
Original entry on oeis.org
1, 4, 0, 4, 4, 0, 4, 4, 1, 0, 4, 0, 10, 4, 0, 4, 0, 0, 4, 4, 0, 4, 0, 0, 4, 4, 0, 4, 4, 0, 0, 4, 0, 4, 16, 0, 2, 0, 0, 0, 4, 0, 4, 4, 0, 16, 4, 0, 0, 4, 0, 0, 4, 0, 4, 0, 0, 4, 0, 0, 4, 0, 0, 4, 4, 0, 4, 16, 0, 4, 4, 0, 0, 0, 0, 4, 4, 0, 16, 0, 0, 4, 4, 0, 2, 0, 0, 0, 4, 4, 0
Offset: 0
(1 + 1/3^s + 1/7^s + 1/9^s + ...)*(1 + i/3^s - i/7^s - 1/9^s + ...)*(1 - 1/3^s - 1/7^s + 1/9^s + ...)*(1 - i/3^s + i/7^s - 1/9^s + ...) = 1 + 4/11^s + 4/31^s + 4/41^s + 4/61^s + 4/71^s + 1/81^s + 4/101^s + ...
-
A378012(n) = {
my(f = factor(10*n+1), res = 1); for(i=1, #f~,
if(f[i,1] % 10 == 1, res *= binomial(f[i,2]+3, 3));
if(f[i,1] % 10 == 9, if(f[i,2] % 2 == 0, res *= f[i,2]/2+1, return(0)));
if(f[i,1] % 10 == 3 || f[i,1] % 10 == 7, if(f[i,2] % 4 != 0, return(0))));
res; }
A378006
Square table read by descending antidiagonals: the k-th column has Dirichlet g.f. Product_{chi} L(chi,s), where chi runs through all Dirichlet characters modulo k.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Table starts
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 2, 0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 2, 0, 0, 2, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, 2, 0, 0, 0, ...
1, 1, 0, 1, 0, 0, 0, 2, 0, 0, ...
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
See A378007 for more details.
-
A378006(n,k) = {
my(f = factor(n), res = 1); for(i=1, #f~, if(k % f[i,1] == 0, return(0));
my(d = znorder(Mod(f[i,1],k))); if(f[i,2] % d != 0, return(0), my(m = f[i,2]/d, r = eulerphi(k)/d); res *= binomial(m+r-1,r-1)));
res;}
Showing 1-6 of 6 results.
Comments