cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378062 Array read by ascending antidiagonals: A(n, k) = (n + 1)*binomial(2*k + n - 1, k - 1)^2 / (2*k + n - 1) for k > 0, and A(n, 0) = 0.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 8, 20, 0, 1, 15, 75, 175, 0, 1, 24, 189, 784, 1764, 0, 1, 35, 392, 2352, 8820, 19404, 0, 1, 48, 720, 5760, 29700, 104544, 226512, 0, 1, 63, 1215, 12375, 81675, 382239, 1288287, 2760615, 0, 1, 80, 1925, 24200, 196625, 1145144, 5010005, 16359200, 34763300
Offset: 0

Views

Author

Peter Luschny, Dec 07 2024

Keywords

Examples

			Array A(n, k) starts:
  [0] 0, 1,  3,   20,   175,    1764,    19404, ... A000891
  [1] 0, 1,  8,   75,   784,    8820,   104544, ... A145600
  [2] 0, 1, 15,  189,  2352,   29700,   382239, ... A145601
  [3] 0, 1, 24,  392,  5760,   81675,  1145144, ... A145602
  [4] 0, 1, 35,  720, 12375,  196625,  3006003, ... A145603
  [5] 0, 1, 48, 1215, 24200,  429429,  7154784, ...
  [6] 0, 1, 63, 1925, 44044,  869505, 15767024, ...
  [7] 0, 1, 80, 2904, 75712, 1656200, 32626944, ...
.
Seen as a triangle, T(n, k) = A(n-k, k). Compare the descending antidiagonals of A378061.
  [0] 0;
  [1] 0, 1;
  [2] 0, 1,  3;
  [3] 0, 1,  8,  20;
  [4] 0, 1, 15,  75,  175;
  [5] 0, 1, 24, 189,  784,  1764;
  [6] 0, 1, 35, 392, 2352,  8820,  19404;
  [7] 0, 1, 48, 720, 5760, 29700, 104544, 226512;
		

Crossrefs

Programs

  • Maple
    A := (n, k) -> ifelse(k = 0, 0, (n + 1)*binomial(2*k + n - 1, k - 1)^2/(2*k + n - 1)):
    for n from 0 to 7 do seq(A(n, k), k = 0..7);
  • Mathematica
    A[n_, k_] := If[k==0, 0, (n + 1)*Binomial[2*k + n - 1, k - 1]^2 / (2*k + n - 1)]; Table[A[n-k,k],{n,0,9},{k,0,n}]//Flatten (* Stefano Spezia, Dec 08 2024 *)