cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378066 Array read by ascending antidiagonals: A(n, k) = (-2*n)^k * Euler(k, (n - 1)/(2*n)) for n >= 1 and A(0, k) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -3, -2, 1, 1, 1, -8, -11, 0, 1, 1, 1, -15, -26, 57, 16, 1, 1, 1, -24, -47, 352, 361, 0, 1, 1, 1, -35, -74, 1185, 1936, -2763, -272, 1, 1, 1, -48, -107, 2976, 6241, -38528, -24611, 0, 1
Offset: 0

Views

Author

Peter Luschny, Nov 15 2024

Keywords

Comments

This is the counterpart of A377666, where A(1, n) are the secant numbers A122045(n). Here A(1, n) are the tangent numbers A155585(n).

Examples

			Array starts:
  [0]  1, 1,   1,    1,     1,     1,        1, ...  A000012
  [1]  1, 1,   0,   -2,     0,    16,        0, ...  A155585
  [2]  1, 1,  -3,  -11,    57,   361,    -2763, ...  A188458
  [3]  1, 1,  -8,  -26,   352,  1936,   -38528, ...  A000810
  [4]  1, 1, -15,  -47,  1185,  6241,  -230895, ...  A000813
  [5]  1, 1, -24,  -74,  2976, 15376,  -906624, ...  A378065
  [6]  1, 1, -35, -107,  6265, 32041, -2749355, ...
  [7]  1, 1, -48, -146, 11712, 59536, -6997248, ...
		

Crossrefs

Columns: A005563 (k=2), A080663 (k=3), A378064 (k=4).
Cf. A378063 (main diagonal), A377666 (secant), A081658 (column generating polynomials).

Programs

  • Maple
    A := (n, k) -> ifelse(n = 0, 1, (-2*n)^k * euler(k, (n - 1) / (2*n))):
    for n from 0 to 7 do seq(A(n, k), k = 0..9) od; # row by row
    # Alternative:
    A := proc(n, k) local j; add(binomial(k, j)*euler(j, 1/2)*(-2*n)^j, j = 0..k) end: seq(seq(A(n - k, k), k = 0..n), n = 0..10);
    # Using generating functions:
    egf := n -> exp(x)/cosh(n*x): ser := n -> series(egf(n), x, 14):
    row := n -> local k; seq(k!*coeff(ser(n), x, k), k = 0..7):
    seq(lprint(row(n)), n = 0..7);

Formula

A(n, k) = k! * [x^k] exp(x)/cosh(n*x).
A(n, k) = Sum_{j = 0..k} binomial(k, j) * Euler(j, 1/2) *(-2*n)^j.