A378066 Array read by ascending antidiagonals: A(n, k) = (-2*n)^k * Euler(k, (n - 1)/(2*n)) for n >= 1 and A(0, k) = 1.
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -3, -2, 1, 1, 1, -8, -11, 0, 1, 1, 1, -15, -26, 57, 16, 1, 1, 1, -24, -47, 352, 361, 0, 1, 1, 1, -35, -74, 1185, 1936, -2763, -272, 1, 1, 1, -48, -107, 2976, 6241, -38528, -24611, 0, 1
Offset: 0
Examples
Array starts: [0] 1, 1, 1, 1, 1, 1, 1, ... A000012 [1] 1, 1, 0, -2, 0, 16, 0, ... A155585 [2] 1, 1, -3, -11, 57, 361, -2763, ... A188458 [3] 1, 1, -8, -26, 352, 1936, -38528, ... A000810 [4] 1, 1, -15, -47, 1185, 6241, -230895, ... A000813 [5] 1, 1, -24, -74, 2976, 15376, -906624, ... A378065 [6] 1, 1, -35, -107, 6265, 32041, -2749355, ... [7] 1, 1, -48, -146, 11712, 59536, -6997248, ...
Crossrefs
Programs
-
Maple
A := (n, k) -> ifelse(n = 0, 1, (-2*n)^k * euler(k, (n - 1) / (2*n))): for n from 0 to 7 do seq(A(n, k), k = 0..9) od; # row by row # Alternative: A := proc(n, k) local j; add(binomial(k, j)*euler(j, 1/2)*(-2*n)^j, j = 0..k) end: seq(seq(A(n - k, k), k = 0..n), n = 0..10); # Using generating functions: egf := n -> exp(x)/cosh(n*x): ser := n -> series(egf(n), x, 14): row := n -> local k; seq(k!*coeff(ser(n), x, k), k = 0..7): seq(lprint(row(n)), n = 0..7);
Formula
A(n, k) = k! * [x^k] exp(x)/cosh(n*x).
A(n, k) = Sum_{j = 0..k} binomial(k, j) * Euler(j, 1/2) *(-2*n)^j.
Comments