cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A378113 Number of n-tuples (p_1, p_2, ..., p_n) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_n only touches the x-axis at its endpoints.

Original entry on oeis.org

1, 1, 2, 23, 880, 105554, 40446551, 50637232553, 209584899607676, 2881189188022646406, 131778113962930341491415, 20065327661524165382215337625, 10173706896856510992170168595911888, 17178054578218938036671513200907244799852, 96590987238453485101729361602126273065518820938
Offset: 0

Views

Author

Alois P. Heinz, Nov 16 2024

Keywords

Examples

			a(2) = 2:
          /\       /\   /\
   (/\/\,/  \)   (/  \,/  \) .
The a(3) = 23 3-tuples can be encoded as 114, 115, 124, 125, 134, 135, 144, 145, 155, 224, 225, 244, 245, 255, 334, 335, 344, 345, 355, 444, 445, 455, 555, where the digits represent the following Dyck paths:
  1        2        3        4        5 /\
            /\         /\     /\/\     /  \
  /\/\/\   /  \/\   /\/  \   /    \   /    \ .
		

Crossrefs

Main diagonal of A378112.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, 2^k*mul(
          (2*(n-i)+2*k-3)/(n+2*k-1-i), i=0..k-1)*b(n-1, k))
        end:
    A:= proc(n, k) option remember;
          b(n, k)-add(A(n-i, k)*b(i, k), i=1..n-1)
        end:
    a:= n-> A(n$2):
    seq(a(n), n=0..15);

Formula

a(n) = A378112(n,n).