A378113 Number of n-tuples (p_1, p_2, ..., p_n) of Dyck paths of semilength n, such that each p_i is never below p_{i-1} and the upper path p_n only touches the x-axis at its endpoints.
1, 1, 2, 23, 880, 105554, 40446551, 50637232553, 209584899607676, 2881189188022646406, 131778113962930341491415, 20065327661524165382215337625, 10173706896856510992170168595911888, 17178054578218938036671513200907244799852, 96590987238453485101729361602126273065518820938
Offset: 0
Keywords
Examples
a(2) = 2: /\ /\ /\ (/\/\,/ \) (/ \,/ \) . The a(3) = 23 3-tuples can be encoded as 114, 115, 124, 125, 134, 135, 144, 145, 155, 224, 225, 244, 245, 255, 334, 335, 344, 345, 355, 444, 445, 455, 555, where the digits represent the following Dyck paths: 1 2 3 4 5 /\ /\ /\ /\/\ / \ /\/\/\ / \/\ /\/ \ / \ / \ .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..62
- Wikipedia, Counting lattice paths
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, 2^k*mul( (2*(n-i)+2*k-3)/(n+2*k-1-i), i=0..k-1)*b(n-1, k)) end: A:= proc(n, k) option remember; b(n, k)-add(A(n-i, k)*b(i, k), i=1..n-1) end: a:= n-> A(n$2): seq(a(n), n=0..15);
Formula
a(n) = A378112(n,n).